Distribution Summary

Distributed on 03/16/2022 by Tyler Chow ()

To: \quad| Eddie McCallum (Hazen and Sawyer - Atlanta), Jeff Winston (Clayton County Water Authority) | |
| :--- | :--- |
| | , Jordan Tinnell (Crowder Construction Company), Tyler Chow (Hazen and Sawyer - Atlanta) |
| | , Griffin Ghesquiere (Hazen and Sawyer - Atlanta) |

Message:
None
Additional Attachments:

NAME	RESPONSE	ATTACHMENTS	COMMENT
Nick Meyer (Hazen and Sawyer - Atlanta)	Furnish as Corrected		No Comments

Power System Study Report

SPEC SECTION:	260500 - Basic Electrical Requirements	CREATED BY:	
		DATE CREATED:	$03 / 11 / 2022$
ISSUE DATE:	$03 / 11 / 2022$	REVISION:	E
RESPONSIBLE	Crowder Construction Company	RECEIVED FROM:	Jordan Tinnell
CONTRACTOR:			
RECEIVED DATE:	$03 / 11 / 2022$	SUBMIT BY:	$03 / 07 / 2022$
FINAL DUE DATE:	$03 / 21 / 2022$	LOCATION:	
TYPE:		COST CODE:	

BALL IN COURT:

DISTRIBUTION:

Jeff Winston (Clayton County Water Authority), Jordan Tinnell (Crowder Construction Company) , Eddie McCallum (Hazen and Sawyer Atlanta), Griffin Ghesquiere (Hazen and Sawyer - Atlanta), Tyler Chow (Hazen and Sawyer - Atlanta)

DESCRIPTION:

Submittal to address comment from Version D

ATTACHMENTS:

$260500-001-E$ Power System Study Report - Address Comm From Ver. D.pdf

To: Hazen \& Sawyer 5775 Peachtree Dunwoody Road Suite 2-520
Atlanta, GA 300342
Attn: Tyler Chow, P.E.
Ph: 404-459-6363
Cell: 626-780-7164

Date: 03/11/2022	Job No.: Hazen: 32457-010 Crowder: 40781
Project:	
W.J. Hooper WPP Standby Power Generator	
Location:	
Stockbridge, GA	
Submittal No:	
2605 00-001-E	
Specification Section:	
260500	

WE ARE SENDING YOU \quad Attached \square Under separate cover via ___ the following items:

\square Shop drawings	\square Prints	\square Plans	\square Samples
\square Copy of Letter	\square Change order	\square Other	\square Specifications

COPIES	NO.	
1		Power System Study Report - Resubmittal to Address Comments from Version D

THESE ARE TRANSMITTED as checked below:

\square For approval	\square Resubmit___ copies for approval	\square For your use
\square Submit ___ copies for distribution	\square As requested	\square Returned for corrections
\square Return ___corrected prints	\square For Information Only	\square Other:
\square FOR BIDS DUE		

W.J. Hooper WPP Standby Generator

70 Oakdale Drive, Stockbridge, GA 30281

Owner: Clayton County Water Authority Engineer: Hazen \& Sawyer
Submittal Prepared by: Crowder Construction Company

Contractor:	Subcontractor:	Supplier:
Crowder Construction Company	N/A	Electrical Reliability Services Inc
1080 Holcomb Bridge Rd		2275 Northwest Parkway SE
Bldg. 200, Suite 180	Suite 180	
Roswell, GA 30076		Marietta, GA 30067

Submittal No: 2605 00-001-E
Submittal Name: Power System Study Report - Resubmittal to Address Comments from Version D
Product Manufacturer: Electrical Reliability Services (ERS)
Ref. Specification No: 260500
Ref. Specification Title: Basic Electrical Requirements
Drawing Reference: N/A
Submittal Date: 03/11/2022

Crowder Construction Submittal Review:

For approval \qquad
Approved. ∇

Approved as Noted. \qquad
Revise and Resubmit. \qquad
For Information Only \qquad
Crowder Construction has reviewed, checked, and approved this submittal for compliance with Contract Documents.
Approval by Crowder Construction Company does not relieve suppliers or subcontractors of responsibility to comply with requirements of plans and specification and/or other contract document under and for which this information is submitted. Nor does our approval establish compliance with the design concept of the project.

By: Jordan Tinnell
Date: $\underline{03 / 11 / 2022}$

Crowder Comments:

Attached is the resubmittal from Power System Study performed by ERS to address the required changes below.

Summary of changes to the SEL 700G relay:

1. The settings are approved. Please make all haste to implement the change to the GEN breaker relay. In the mean time make the following corrections to the study report:
2. Update TCC-001-GENERATOR G1 to show the RY-35-52-G1 trip curve. Page 48 of the PDF does not include the trip curve.
3. Update Row 4 (35MSG (LineSide) RY-35-52-F1)
with the correct incident energy value on the bus of 35MVATS. $51.68 \mathrm{cal} / \mathrm{cm} 2$ is not a value that would be seen downstream of RY-35-52-UM.

Submittal \#26 05 00-001.D 260500 - Basic Electrical Requirements
Hazen and Sawyer
5775 Peachtree Dunwoody Road, Suite D-520
Atlanta, Georgia 30342
Project: 32457-011 - CCWA - WJ Hooper WPP Generator
70 Oakdale Drive

Phone: (404) 459-6363

Distribution Summary

Distributed on 02/22/2022 by Griffin Ghesquiere ()

To: \quad| Eddie McCallum (Hazen and Sawyer - Atlanta), Jeff Winston (Clayton County Water Authority) | |
| :--- | :--- |
| | , Jordan Tinnell (Crowder Construction Company), Tyler Chow (Hazen and Sawyer - Atlanta) |
| | , Griffin Ghesquiere (Hazen and Sawyer - Atlanta) |

Message: Engineer's review of the Contractor's submittals shall in no way relieve the Contractor of any of his responsibilities under the Contract. An acceptance of a submittal shall be interpreted to mean that the Engineer has no specific objections to the submitted material, subject to conformance with the Contract Drawings and Specifications. Engineer's review is confined to general arrangement and compliance with the Contract Drawings and Specifications only, and will not be for the purpose of checking dimensions, weights, clearances, fittings, tolerances, interferences, coordination of trades, etc.
Additional Attachments:
2605 00-001-D Power System Study Report - SEL 700G Relay Settings Adj.pdf

NAME	RESPONSE	ATTACHMENTS	COMMENT
Nick Meyer (Hazen and Sawyer - Atlanta)	Furnish as Corrected- Confirm		1) The settings are approved. Please make all haste to implement the change to the GEN breaker relay. In the mean time make the following corrections to the study report: 2) Update TCC-001-GENERATOR G1 to show the RY-35-52-G1 trip curve. Page 48 of the PDF does not include the trip curve. 3) Update Row 4 (35MSG (LineSide) RY-35-52-
F1) with the correct incident energy value on the			
bus of 35MVATS. 51.68 cal/cm2 is not a value			
that would be seen downstream of RY-35-52-			
UM.			

Power System Study Report

SPEC SECTION:	260500 - Basic Electrical Requirements	CREATED BY:	
		DATE CREATED:	$02 / 22 / 2022$
ISSUE DATE:	$02 / 22 / 2022$	REVISION:	D
RESPONSIBLE	Crowder Construction Company	RECEIVED FROM:	Jordan Tinnell
CONTRACTOR:			
RECEIVED DATE:	$02 / 21 / 2022$	SUBMIT BY:	$03 / 07 / 2022$
FINAL DUE DATE:	$03 / 07 / 2022$	LOCATION:	
TYPE:		COST CODE:	

BALL IN COURT:

DISTRIBUTION:

Jeff Winston (Clayton County Water Authority) , Jordan Tinnell (Crowder Construction Company) , Eddie McCallum (Hazen and Sawyer -
Atlanta), Griffin Ghesquiere (Hazen and Sawyer - Atlanta), Tyler Chow (Hazen and Sawyer - Atlanta)

DESCRIPTION:

ATTACHMENTS:
$260500-001$-D Power System Study Report - SEL 700G Relay Settings Adj.pdf

VERTIV - Electrical Reliability Services, Inc.

March 10, 2022

Crowder Construction Company
1229 Royal Dr SW
Conyers, GA, 30094

Attention: Mr. Jordan Tinnel
Subject: Power System Study - WJ Hooper
ERS Reference No. 1075681

Mr. Jordan Tinnel:
Enclosed is the subject Power System Study. Please review and contact us if you find any errors or omissions that need to be addressed.

Please let me know upon your acceptance/approval of the study so that we can move forward and order the arc flash hazard labels.

It was our pleasure to be of service to you on this project. If you have any questions, or if we can be of further assistance, please do not hesitate to call.

Thank you,

Electrical Reliability Services, Inc.

Enclosures

Power System Study

Electrical Reliability Services, Inc.

```
2275 Northwest Parkway SE, Suite }18
Marietta, GA 30067
USA
T (770) 541-6600
F (770) 541-6501
www.Vertiv.com
```

Submitted: March 10, 2022

ERS Reference No. 1075681

Project: WJ Hooper
700 Millers Mill Rd
Stockbridge, GA, 30281

Client	Crowder Construction Company Conyers, GA, 30094$.$Coyal Dr SW

Attention: Mr. Jordan Tinnel

Submitted by: Stephen Tyler
Power Systems Engineer
Reviewed by: Jeff Sullivan
Supervising Power Systems Engineer

TABLE OF CONTENTS

1.0 INTRODUCTION Page 1
2.0 EXECUTIVE SUMMARY Page 3
2.1 Short Circuit Analysis Page 3
2.2 Protective Device Coordination Page 3
2.3 Arc Flash Evaluation Page 3
3.0 ANALYSIS AND METHODS Page 4
3.1 Short Circuit Analysis Page 4
3.2 Protective Device Coordination Page 5
3.3 Arc Flash Evaluation Page 5
4.0 FINDINGS AND RECOMMENDATIONS Page 11
4.1 Short Circuit Analysis Page 11
4.2 Protective Device Coordination Page 11
4.3 Arc Flash Evaluation Page 11
5.0 CLOSING REMARKS Page 13
APPENDIX 1 Glossary of Terms
APPENDIX 2 Engineering Bibliography \& Reference Materials
APPENDIX 3 Project Drawings \& Utility Fault Duty Data
APPENDIX 4 Short Circuit Fault Analysis Input Report
APPENDIX 5 Short Circuit Fault Analysis Output Report
APPENDIX 6 Device Evaluation Report
APPENDIX 7 Recommended Device Settings
APPENDIX 8 TCC's
APPENDIX 9 Arc Flash Data/Summary
APPENDIX 10 Analysis Model One-line Diagram

REVISION NOTES

REV	DATE	CHANGES
0	6/16/2021	- N/A - Original Issue
1	7/8/2021	- Settings for "RY-35-52-UM" adjusted - Load for "HSP-3", "HSP-4", and "HSP-5" changed to 800 HP
2	12/20/21	- Motor Starting curve for $\mathbf{8 0 0}$ HP HSP adjusted based on end user input - Settings for SEL 700G relay for generator breaker G1 adjusted - Coordination adjusted for change in settings of generator breaker
3	2/16/22	- 51P setting determined to be unable to be applied to installed SEL 700G breaker. Settings for 50P adjusted per direction by Hazen.
4	3/9/2022	- TCC display settings adjusted to show RY-35-52-G1 curve. Was not previously shown as other TCC's were limited to only show effective settings within maximum available fault currents. - Arc Flash Tables adjusted

ERS lval

1.0 INTRODUCTION

Power system studies were performed to analyze the quality of protection for the electrical power distribution system at the WJ Hooper facility. The studies performed included short circuit, protective device coordination and arc flash evaluation for the equipment as indicated on the attached analysis model one-line diagram in the Appendix.
1.1 Major objectives of the studies

- Compare calculated fault duties with the withstand and interrupting ratings for distribution panels and protective devices.
- Recommend protective device settings which selectively isolate faults in a manner which is consistent with the basic system design and applicable codes and standards. These recommendations will be given to achieve an optimum balance between protection and selective fault isolation.
- Determine arc flash incident energy levels and PPE requirements.
- Note areas of deficiency and make general recommendations.

1.2 Report Content

- Section 2.0 contains an executive summary of the study findings.
- Section 3.0 contains detailed information on the analysis and methods.
- Section 4.0 contains detailed findings and recommendations.
- The appendices contain short circuit fault analysis information, recommended settings, time current curves, arc flash analysis data and a one-line diagram of the system studied.

1.3 Basic System Data and Assumptions

System data for the power system study was based on the electrical submittals and drawings as supplied by Crowder Construction Company. Any system changes will render the findings in this report to be inaccurate and a study revision will be required.

Utility source short circuit fault duties were as given by the electrical utility and are attached in Appendix 3.

All analysis was performed with the power system in the normal condition only (utility power source, ATS's in normal position, Tie breakers open). The only exception to this is that all UPS's were assumed to have bypass capability in order to propagate the maximum fault duty through the system to facilitate the most stringent short circuit evaluation. Alternative scenarios (if any) modify this default configuration assumption as noted in Section 1.4 below (if applicable).

1.4 System Analysis Scenarios

Multiple system configuration scenarios were analyzed as detailed in the table below. The arc flash results as indicated in the Appendix are independently based on the worst-case scenario (S0 \& S1) for each location. The short circuit analysis and associated equipment short circuit evaluation were based on the scenario with the greatest fault duty (S0).

SCENARIO NAME	DESCRIPTION
Normal	Utility in Service, Breakers in 35MVATS set to power downstream equipment from utility power.
Emergency	Utility out of Service, Breakers in 35MVATS set to power downstream equipment from generator power.

2.0 EXECUTIVE SUMMARY

2.1 Short Circuit Analysis

All known devices within the scope of the project were found to have acceptable short circuit interrupting ratings when compared to system fault duties. Please refer to Sections 3.1 and 4.1 for more detailed information.

2.2 Protective Device Coordination

The recommended device settings provided in this report should provide adequate system protection and coordination. Please refer to Sections 3.2 and 4.2 for more detailed information.

2.3 Arc Flash Evaluation

The arc flash hazard calculations within this study are based on the recommended settings. As such, all recommended settings must be successfully implemented prior to the application of the corresponding arc flash hazard labels. These recommended settings were typically chosen to provide optimum protective device selectivity while minimizing the resulting arc flash incident energy at each location where possible. No work should be done on or around any energized equipment without the use of a proper level of PPE and adequate training. Please refer to Sections 3.3 and 4.3 for more detailed information.

ERS Varal

3.0 ANALYSIS AND METHODS

3.1 Short Circuit Analysis

The SKM System Analysis, Inc. PowerTools for Windows A_FAULT program used for the analysis complies with the ANSI/IEEE C37 standards for calculation of short circuit fault currents. It offers separate solutions for low, medium and high voltage systems and for symmetrical, momentary and interrupting calculations as defined in the standards.

A computer model of the electrical system was created based on the data obtained for the analysis. The model was input into the software program and analyzed to determine the maximum short circuit fault current levels throughout the system. These calculated short circuit currents were then compared to the equipment short circuit ratings to determine the adequacy of the equipment ratings. If the calculated short circuit fault current ${ }^{1}$ exceeded the rating of the equipment, then the equipment failed the short circuit device evaluation and was flagged as "Fail" within the device evaluation tables in the appendix.

When evaluating the ability of low voltage protective devices to interrupt available fault duties, two types of systems are common; fully rated or series rated.

A fully rated system is one in which each and every overcurrent protective device has a short circuit rating that meets or exceeds the actual short circuit fault current available at the device.

A series rated system utilizes special elevated (series) ratings for some of the equipment. Series ratings are special short circuit interrupting ratings assigned to tested \& approved combinations of two or more overcurrent protective devices which are connected in series and in which the rating of the downstream device(s) in the combination is less than the series rating. The elevated series rating is essentially based on the two devices operating simultaneously and sharing the interrupting energies; thereby facilitating an elevated short circuit rating.

To conform with the National Electrical Code, Section 110-22, where circuit breakers or fuses are applied in compliance with the series combination ratings marked on the equipment by the manufacturer, equipment enclosures must be legibly marked in the field to indicate the equipment has been applied with a series combination rating.

Complete short circuit analysis input \& output reports as well as device evaluation tables are contained in the Appendices.

[^0]
3.2 Protective Device Coordination

The intent of the protective device coordination analysis is to evaluate, and if necessary, recommend overcurrent protective device setting adjustments to yield optimum power system performance, reliability and safety. In many cases the above goals conflict with one another and compromises must be made based on system criticality and facility operating philosophy. Where necessary, the recommended settings were chosen to maximize system reliability while minimizing conditions of jeopardized system selectivity.

As stated in ANSI/IEEE Standard 242-2001, "Whether minimizing the risk of equipment damage or preserving service continuity is the more important objective depends upon the operating philosophy of the particular industrial plant or commercial business." Regardless, the equipment applications within the facility have been compared with acceptable practices and industry standards.

System selectivity is most often illustrated by the use of Time-Current Curves (TCC's) which graphically illustrate the overcurrent responses of protective devices to overcurrent events. The specific manufacturer specified time-current characteristics of the overcurrent devices are plotted on logarithmic graphs. Other electrical equipment characteristics such as, but not limited to, transformer damage, transformer inrush, motor starting and generator decrement can also be plotted on the same graphs to help with the analysis. Protective device setting tables and TCC's for the system studied are included in the Appendices.

3.3 Arc Flash Evaluation

Arc flash evaluations are used in conjunction with the client's/facility operator's safety policy to determine the required personal protective equipment (PPE) when working on or near energized equipment. Many electrical injuries are burns that are the result from exposure to the energies liberated during an arcing fault. The burns are typically second and third degree in nature and are often fatal.

NFPA 70-2017, National Electrical Code, requires equipment to be field marked to indicate where a flash hazard exists:
110.16 Arc-Flash Hazard Warning. Electrical equipment, such as switchboards,
switchgear, panelboards, industrial control panels, meter socket enclosures, and motor
control centers, that is in other than dwelling units, and is likely to require examination,
adjustment, servicing, or maintenance while energized, shall be field or factory marked
to warn qualified persons of potential electric arc flash hazards. The marking shall meet
the requirements in 110.21(B) and shall be located so as to be clearly visible to qualified
persons before examination, adjustment, servicing, or maintenance of the equipment.

NFPA 70E-2021, Standard for Electrical Safety in the Workplace, states the following:
130.5 Arc Flash Risk Assessment.
(A) General. An arc flash risk assessment shall be performed:
(1) To identify arc flash hazards
(2) To estimate the likelihood of occurrence of injury or damage to health and the potential severity of injury or damage to health
(3) To determine if additional protective measures are required, including the use of PPE
(G) Incident Energy Analysis Method. The incident energy exposure level shall be based on the working distance of the employee's face and chest areas from a prospective arc source for the specific task to be performed. Arc-rated clothing and other PPE shall be used by the employee based on the incident energy exposure associated with the specific task. Recognizing that incident energy increases as the distance from the arc flash decreases, additional PPE shall be used for any parts of the body that are closer than the working distance at which the incident energy was determined.

The incident energy analysis shall take into consideration the characteristics of the overcurrent protective device and its fault clearing time, including its condition of maintenance.

The incident energy analysis shall be updated when changes occur in the electrical distribution system that could affect the results of the analysis. The incident energy analysis shall also be reviewed for accuracy at intervals not to exceed 5 years.

OSHA regulations represent the other major source of standards that apply to arc flash hazards. The primary regulations are in 29CFR 1910 Subparts I, and S. These can be broken down into three general areas, hazard identification and PPE selection, training, and proficiency.
1910.132(d) Hazard assessment and equipment selection

The employer shall assess the workplace to determine if hazards are present, or are likely to be present, which necessitate the use of personal protective equipment (PPE). If such hazards are present, or likely to be present, the employer shall: Select, and have each affected employee use, the types of PPE that will protect the affected employee from the hazards identified in the hazard assessment; Communicate selection decisions to each affected employee; and, Select PPE that properly fits each affected employee.

The employer shall verify that the required workplace hazard assessment has been performed through a written certification that identifies the workplace evaluated; the person certifying that the evaluation has been performed; the date(s) of the hazard assessment; and, which identifies the document as a certification of hazard assessment.

1910.335(a)(1)(i) Personal Protective Equipment

Employees working in areas where there are potential electrical hazards shall be provided with, and shall use, electrical protective equipment that is appropriate for the specific parts of the body to be protected and for the work to be performed.

1910.132(f) Training

The employer shall provide training to each employee who is required by this section to use PPE. Each such employee shall be trained to know at least the following: When PPE is necessary; What PPE is necessary; How to properly don, doff, adjust, and wear PPE;

The limitations of the PPE; and, The proper care, maintenance, useful life and disposal of the PPE.

Each affected employee shall demonstrate an understanding of the training specified in paragraph (f)(1) of this section, and the ability to use PPE properly, before being allowed to perform work requiring the use of PPE.

1910.132(f)(3) Proficiency \& Retraining

When the employer has reason to believe that any affected employee who has already been trained does not have the understanding and skill required by paragraph (f)(2) of this section, the employer shall retrain each such employee. Circumstances where retraining is required include, but are not limited to, situations where: Changes in the workplace render previous training obsolete; or Changes in the types of PPE to be used render previous training obsolete; or Inadequacies in an affected employee's knowledge or use of assigned PPE indicate that the employee has not retained the requisite understanding or skill.

The employer shall verify that each affected employee has received and understood the required training through a written certification that contains the name of each employee trained, the date(s) of training, and that identifies the subject of the certification.

The calculations used in this study comply with NFPA 70E requirements in that the incident energy levels and arc flash boundaries are calculated and the corresponding level of PPE required is identified. The results of the arc-flash calculations are based on the values of fault current magnitudes calculated in the short-circuit analysis and the associated clearing times of the over current protective devices as determined by the coordination study. A table summarizing the results for all locations evaluated is included in the Appendix.

3.3.1 Basis for Arc Flash Evaluation

The IEEE Std 1584-2018 IEEE Guide for Performing Arc-Flash Hazard Calculations was used as the calculation basis for the equipment within the scope of this project. This standard contains calculation methods developed through testing by several sources to determine boundary distances for unprotected personnel and the incident energy at the working distance for qualified personnel working on energized equipment. The incident energy level can be used to determine the proper PPE required for personnel.

The equations developed in the IEEE standard assess the arc flash hazard based on the available short circuit fault current, system voltage, clearing time, working distance, equipment type, enclosure dimensions, bus gaps and electrode configuration.

Enclosure dimensions, bus bar gaps and electrode configurations were selected based on equipment type, as recommended in Annex C \& G of IEEE Std 1584-2018, and are summarized in the table below.

Voltage	Equipment Type	$H \times$ W (in)	Depth (in)	Gap (mm)	Electrode Configuration
15 kV	Switchgear (Any)	45×30	30	152	HCB
15 kV	MCC (Any)	36×36	36	152	HCB
5 kV	Switchgear (Any)	45×30	30	104	HCB
5 kV	MCC (Any)	26×26	26	104	HCB
$\leq 600 \mathrm{~V}$	Switchgear (Any)	20×20	20	32	HCB
$\leq 600 \mathrm{~V}$	MCC (Any)	20×20	>8	25	VCBB
$\leq 600 \mathrm{~V}$	Panel (Any)	20×20	>8	25	VCBB
$\leq 600 \mathrm{~V}$	J-Box/Disc (Any)	20×20	>8	25	HCB

IEEE Std 1584-2018 describes five different electrode/conductor configurations as follows:

- VCB: vertical conductors inside a metal enclosure
- VCBB: vertical conductors terminated in an insulating barrier inside a metal enclosure
- HCB: horizontal conductors inside a metal enclosure
- VOA: vertical conductors in open air
- HOA: horizontal conductors in open air

Results from the short circuit and coordination study yield the fault duties and clearing times at locations where arc flash evaluations are to be performed. Per IEEE Std 1584, a maximum arc time of two seconds is utilized to limit incident energy values. The two-second value is intended to simulate the likely egress time of a worker exposed to an electrical arc.

The SKM PowerTools for Windows software uses these techniques to determine the required PPE for energized work, the flash boundary and the incident energy at various distances from the location. Typical ATPV values for protective equipment is used if site-specific manufacturer's data is not available.

For locations where there is an elevated incident energy level, either energized work should be prohibited or extension tools (i.e. hot stick, remote controls...) should be used to distance personnel from the potential arc point. The incident energy at the working distance dictates the required PPE.

3.3.2 Protective Equipment Description

Depending upon the arc thermal levels present at a location, different levels of PPE are required to help facilitate safe work. The following information is based on PPE descriptions per the NFPA 70E standard. Where site specific PPE descriptions and ATPV information is not available, the data in this table is used for the evaluation.

TABLE 3.3.2 ARC FLASH HAZARD RISK/PPE LEVELS

INCIDENT ENERGY $\left(c a l / c^{2}\right)$	PPE DESCRIPTION
$\mathbf{0 - 1 . 2}$	Long sleeve shirt \& pants or coverall (nonmelting or untreated natural fiber), safety glasses/goggles, leather gloves, hearing protection
$\mathbf{1 . 2 - 1 2}$	Arc-rated (AR) long sleeve shirt \& AR pants or AR coverall or AR flash suit, AR face shield \& AR balaclava or AR flash suit hood, hard hat, safety glasses/goggles, hearing protection, leather gloves, leather footwear
>12	Arc-rated (AR) long sleeve shirt \& AR pants or AR coverall and/or AR flash suit, AR flash suit hood, AR gloves, hard hat, safety glasses/goggles, hearing protection, leather footwear

3.3.3 Arc Flash Hazard Labels

Based on the PPE descriptions detailed above, all resulting arc flash hazard labels will be similar to that as shown in Figure 3.3.3 below.

FIGURE 3.3.3 TYPICAL ARC FLASH HAZARD LABEL

! D A C E	
SHOCK and ARC FLASH HAZARD	
PNL 3	
480 VAC	Shock Hazard
00	Class Glove with Leather Protectors
42 in	Limited Approach (Fixed Circuit)
12 in	Restricted Approach
$14 \mathrm{cal} / \mathrm{cm}^{\wedge} 2$	Incident Energy at 18 in Arc Flash Boundary
ARC FLASH PPE REQUIRED	
Arc-rated (AR) long sleeve shirt \& AR pants or AR coverall and/or AR flash suit, AR flash suit hood, AR gloves, hard hat, safety glasses/goggles, hearing protection, leather footwear	
WARNING: Power system changes will invalidate the information on this label	
ers.VertivCo.com	Electrical Reliability Services, Inc. (562) 236-9555
Job\#: SAMPLE1	05/18/17 By: ERS

4.0 FINDINGS AND RECOMMENDATIONS

4.1 Short Circuit Analysis

Based on the model created, a fault case was run and the available short circuit fault duties were compared to the short circuit ratings of the devices studied. All known devices within the scope of the project were found to have acceptable short circuit ratings when compared to system fault duties. Complete short circuit analysis input \& output reports as well as device evaluation tables are contained in the Appendices.

4.2 Protective Device Coordination

The recommended device settings provided in this report should provide adequate system protection and coordination. The recommended settings were chosen to maximize system reliability while minimizing conditions of jeopardized system selectivity. It is recommended to implement the settings as indicated in the Appendix and thoroughly test the devices to assure proper operation within the manufacturer's tolerances.

WARNING! Since the arc flash incident energy calculations are based on the recommended settings as given in this study, all recommended settings must be successfully implemented prior to affixing of the arc flash hazard labels!

4.3 Arc Flash Evaluation

The arc flash hazard calculations within this study are based on the recommended settings. As such, all recommended settings must be successfully implemented prior to the application of the corresponding arc flash hazard labels. These recommended settings were typically chosen to provide optimum protective device selectivity while minimizing the resulting arc flash incident energy at each location where possible. No work should be done on or around any energized equipment without the use of a proper level of PPE and adequate training. An arc flash hazard summary/data table is included in the Appendix which provides full details of the analysis and the results.

IMPORTANT NOTE: The Arc flash hazard analysis methods and calculations used within this study are based on the protective devices operating as designed and being applied, maintained and tested as per the manufacturer's specifications and accepted industry standards. Periodic maintenance and testing of the electrical equipment is highly recommended as endorsed by the NFPA-70B Standard, Recommended Standard for Electrical Equipment Maintenance, to confirm the safe and acceptable operation of the power system equipment and protective devices.

4.4 System-Wide Study

It is recommended that a complete Short Circuit, Coordination and Arc Flash Study be performed for the entire facility in order to ensure optimum power system reliability, performance and safety throughout the system.

5.0 CLOSING REMARKS

The combination of the successful implementation/verification of the recommended/asfound protective device settings and the thorough testing of the protective devices will provide optimum power system reliability and performance.

Power System Studies have consistently proven to be an effective component for improving power system reliability and performance. Also, Arc Flash Studies are a vital component to the safe operation and maintenance of any electrical power system. Hopefully the results and recommendations of this study will substantially increase the quality, reliability and safety of your electrical power system.

This study is intended for use by qualified individuals to help facilitate the installation, operation, maintenance and safety of the electrical power system as depicted. Modification of equipment, changes to system configuration, adjustment of trip-unit settings, and/or failure to properly maintain equipment may invalidate these results.

Any personnel who perform inspections, maintenance or testing while equipment is energized must receive training to understand the hazards identified in this report. This training should be based on relevant, NFPA and OSHA standards and recommendations.

For information regarding training (safety, arc flash, technical...), engineering, corrective and preventive maintenance services offered by Electrical Reliability Services, please call your local ERS Service Center Office.

APPENDIX 1

GLOSSARY OF TERMS

GLOSSARY OF TERMS

1.0 SHORT CIRCUIT STUDIES

1.1 Series Rating: A tested combination of protective devices that allow the use of protective devices in locations that exceed the nameplate rating by operation of a main or upstream protecting devices. Operation of the series rated combination allows the devices to share the interrupting energies.

2.0 COORDINATION STUDIES

2.1 Selectivity (also referred to as Coordination): Refers to the capacity or lack of capacity of a system to isolate a fault to the smallest portion of a system possible.
2.2 Time-Current Curve (TCC): A graphical representation of the operating characteristics of an over current protective device. Typically shown on a log-log chart, this information details the operating time of the breaker over a range of currents.
2.3 Time-Current Curve Set: A group of TCC's arranged to show the operating characteristics of a portion of an electrical system.

3.0 ARC FLASH EVALUATIONS

3.1 Arc-rated (AR) Clothing: Aramid (i.e. Dupont Nomex) or treated natural fiber (Indura or Proban) clothing of various types and weights that are resistant to ignition when exposed to an arc.
3.2 ATPV (Arc Thermal Performance exposure Value): A rating (in $\mathrm{cal} / \mathrm{cm}^{2}$) given to PPE in terms of its ability to protect against the thermal energy resulting from an arcing fault. The incident energy from an arcing fault can be compared with the ATPV values to determine what amount (or number of layers) of PPE is required for safe energized work.
3.3 Electrical Hazard: A dangerous condition in which inadvertent or unintentional contact or equipment failure can result in shock, arcflash burn, thermal burn, or blast.
3.4 Electrical Shock: Physical stimulation that occurs when electrical current passes through the body.
3.5 Energized: Electrically connected to or having a source of voltage.
3.6 Exposed (live parts): Capable of being inadvertently touched or approached nearer than a safe distance by a person. It is applied to parts that are not suitably guarded, isolated, or insulated.
3.7 Flash Boundary: An approach limit at a distance from a prospective arc source with a person could receive a second degree burn (1.2cal/ cm^{2}) if an electrical arc flash were to occur.
3.8 Flash Suit: A complete arc-rated clothing and equipment system that covers the entire body, except for the hands and feet.
3.9 Incident Energy: The thermal energy measured in calories per square centimeter (cal/cm ${ }^{2}$) seen by a person or object as a result of exposure to an electric arc.
3.10 Incident Energy Analysis: A component of an arc flash risk assessment used to predict the incident energy of an arc flash for a specified set of conditions.
3.11 Natural Fiber Clothing: Long sleeve shirts and pants made of cotton or wool. This clothing is not flame-resistant (NON AR), but will char instead of melting like synthetic fibers.
3.12 PPE (Personal Protective Equipment): Clothing or tools used to protect personnel from potentially hazardous conditions while working.
3.13 Shock Hazard: A dangerous condition associated with the possible release of energy caused by contact or approach to live parts.
3.14 Working Distance: The dimension between the possible arc point and the head and body of the worker positioned in place to perform the assigned task.

APPENDIX 2

ENGINEERING BIBLIOGRAPHY \& REFERENCE MATERIALS

ENGINEERING BIBLIOGRAPHY \& REFERENCE MATERIALS

1. IEEE 1584-2002, IEEE Guide for Performing Arc-Flash Hazard Calculations.
2. IEEE 1584-2018, IEEE Guide for Performing Arc-Flash Hazard Calculations.
3. NFPA 70-2017, National Electrical Code.
4. ANSI/NFPA 70E-2021, Standard For Electrical Safety In The Workplace.
5. ANSI/IEEE Std 141-1993 (R 1999), IEEE Recommended Practice for Electrical Power Distribution for Industrial Plants (IEEE Red Book).
6. ANSI/IEEE Std 142-2007, IEEE Recommended Practice for Grounding of Industrial and Commercial Power Systems (IEEE Green Book).
7. IEEE STD 242-2001, IEEE Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems (IEEE Buff Book).
8. IEEE STD C37.010-2016, IEEE Application Guide for AC High-Voltage Circuit Breakers Rated on a Symmetrical Current Basis.
9. IEEE STD C37.20.7-2007, IEEE Guide for Testing Medium-Voltage MetalEnclosed Switchgear for Internal Arcing Faults.
10. ANSI/IEEE Std 399-1997, IEEE Recommended Practice for Industrial and Commercial Power Systems Analysis (IEEE Brown Book).
11. Beeman, D.L., INDUSTRIAL POWER SYSTEMS HANDBOOK, McGraw-Hill, 1955.
12. Bussmann/Eaton, Selecting Protective Devices Electrical Protection Handbook, Bussmann/Eaton, 2014.
13. SKM Systems Analysis, Inc., POWER TOOLS ELECTRICAL ENGINEERING SOFTWARE FOR WINDOWS, SKM Systems Analysis, 2018.

APPENDIX 3

PROJECT DRAWINGS \& UTILITY FAULT DUTY DATA

GEORGIA POWER A SOUTHERN COMPANY

Mar 18, 2021
Andrew Powell
50 Oakdale Dr
McDonough, GA 30253

Dear Mr. Powell:
The following information concerning available fault current is furnished at your request:
Location: Andrew Powell
50 Oakdale Dr.
McDonough, GA 30253
Available fault current at Customer's Service entrance is 7,888 amperes, which does not include any contribution from motor load.

Note: This fault current is based on the following assumptions:
Transformer size: One 5000.0 kVA Underground Transformer
Transformer type: Three-Phase 2400/4160 Volts

A change in transformer size, transformer impedance, service size, or service length will result in a change to the fault current listed above.

If additional information or assistance is required, please contact Antwoine C. Freeman at 404-210-4611.
Sincerely,

Antwoine C Freeman
Engineer
JDA
Job Number: Clayton Water

APPENDIX 4

Project: WJ HOOPER GENERATOR
Crowder Construction Company
WJ Hooper
1075681

DAPPER Fault Analysis Input Report (English)

Utilities

Contribution From Name	Bus Name	In/Out Service	Nominal Voltage		-------- Contribution Data -------			PU (100 MVA Base)		
					Duty	Units	X/R		R PU	X PU
UTIL-GEORGIA-POWER	BUS-0042	In	24,940	3P:	7,888	Amps	8.00	Pos:	0.036	0.291
				SLG:	7,888	Amps	8.00	Zero:	0.036	0.291

Generators

Contribution From Name	Bus Name	In/Out Service	Nominal Voltage	-------- Contribution Data -------			PU (100 MVA Base)	
				Base kVA	X'	X/R	R PU	X PU
GEN-G1	GENERATOR G-1	In	4,160	3,125.00	0.15	20.00	0.24	4.80
					0.15	20.00	0.24	4.80
					0.15	20.00	0.24	4.80

Motors

Contribution From Name	\# of Motors	Bus Name	In/Out Service	Nominal Voltage	--------- Contribution Data --------			PU (100 MVA Base)	
					Base kVA	Xd"	X/R	R PU	X PU
MTR-HSP-1	1	$35 \mathrm{MVC1}$	In	4,160	601.61	0.1507	4.90	5.114	25.056
MTR-HSP-2	1	35 MVC 2	In	4,160	601.61	0.1507	4.90	5.114	25.056
MTR-HSP-3	1	$35 \mathrm{MVC1}$	In	4,160	802.15	0.1507	4.90	3.836	18.792
MTR-HSP-4	1	35MVC2	In	4,160	802.15	0.1507	4.90	3.836	18.792
MTR-HSP-5	1	$35 \mathrm{MVC1}$	In	4,160	713.02	0.1507	4.90	4.315	21.141

Cables

Cable Name	From Bus To Bus	In/Out Service	$\begin{aligned} & \text { Qty } \\ & \text { /Ph } \end{aligned}$	Length Feet	------ Cable Description ------			Per Unit (100 MVA Base)		
					Size	Cond. Type	Duct Type	Insul	R pu	jX pu

Cable Name	From Bus To Bus	In/Out Service	Qty /Ph	Length Feet	Size	------ Cable Description ------		Per Unit (100 MVA Base)			
						Cond. Type	Duct Type	Insul		R pu	jX pu
CBL-0004	35MVATS	In	25	0	4000	Copper	Busway	Epoxy	Pos:	0.0000	0.0000
	35MVATS.								Zero:	0.0000	0.0000
CBL-10F-1	10LS-1	In	1	100	2	Copper	Non-Magnetic	EPR	Pos:	0.1167	0.0270
	BUS-0025								Zero:	0.1855	0.0686
CBL-10F-2	50LS-1	In	1	145	2	Copper	Non-Magnetic	EPR	Pos:	0.1693	0.0391
	BUS-0029								Zero:	0.2690	0.0995
CBL-10SWBD-LEFT	BUS-0043	In	4	65	500	Copper	Magnetic	PVC	Pos:	0.2074	0.3287
	10SWBD-LEFT								Zero:	0.6531	0.8090
CBL-10SWBD-RIGH	BUS-0045	In	4	110	500	Copper	Magnetic	PVC	Pos:	0.3509	0.5562
	10SWBD-RIGHT								Zero:	1.1053	1.3690
CBL-2F-1	2LS-1	In	1	36	2	Copper	Non-Magnetic	EPR	Pos:	0.0420	0.0097
	BUS-0037								Zero:	0.0668	0.0247
CBL-2F-2	2LS-2	In	1	50	2	Copper	Non-Magnetic	EPR	Pos:	0.0584	0.0135
	BUS-0050								Zero:	0.0928	0.0343
CBL-2F-3	2LS-2	In	1	55	6	Copper	Non-Magnetic	EPR	Pos:	0.1621	0.0174
	BUS-0040								Zero:	0.2582	0.0443
CBL-2MCC-RIGHT	BUS-0054	In	4	105	350	Copper	Magnetic	PVC	Pos:	0.4307	0.5594
	2MCC-RIGHT								Zero:	1.3569	1.3774
CBL-35PP1	BUS-0023	In	2	33	3/0	Copper	Magnetic	PVC	Pos:	0.5765	0.3717
	35PP1								Zero:	1.8169	0.9152
CBL-35TX1	35MVC2	In	1	35	1/0	Copper	Non-Magnetic	EPR	Pos:	0.0257	0.0087
	BUS-0022								Zero:	0.0408	0.0222
CBL-50F-1	10LS-1	In	1	40	2	Copper	Non-Magnetic	EPR	Pos:	0.0467	0.0108
	BUS-0026								Zero:	0.0742	0.0275
CBL-50F-2	50LS-1	In	1	35	2	Copper	Non-Magnetic	EPR	Pos:	0.0409	0.0094
	BUS-0030								Zero:	0.0649	0.0240
CBL-50SWBD-LEFT	BUS-0046	In	4	150	500	Copper	Magnetic	PVC	Pos:	0.4785	0.7585
	50SWBD-LEFT								Zero:	1.5072	1.8669
CBL-50SWBD-RIGHBUS-0048		In	4	90	500	Copper	Magnetic	PVC	Pos:	0.2871	0.4551
	50SWBD-RIGHT								Zero:	0.9043	1.1201
CBL-7F-1	2LS-1	In	1	241	2	Copper	Non-Magnetic	EPR	Pos:	0.2812	0.0650
	BUS-0031								Zero:	0.4470	0.1654
CBL-F1 35MVC1	35MSG	In	1	20	350	Copper	Non-Magnetic	EPR	Pos:	0.0043	0.0045
	35MVC1								Zero:	0.0068	0.0115
CBL-F2 35MVC2	35MSG	In	1	20	350	Copper	Non-Magnetic	EPR	Pos:	0.0043	0.0045
	35MVC2								Zero:	0.0068	0.0115
CBL-F3-1	35MSG	In	2	103	4/0	Copper	Non-Magnetic	EPR	Pos:	0.0188	0.0118
	10LS-1								Zero:	0.0299	0.0301
CBL-F3-2	10LS-1	In	2	145	4/0	Copper	Non-Magnetic	EPR	Pos:	0.0265	0.0167
	50LS-1								Zero:	0.0421	0.0424
CBL-F3-3	50LS-1	In	2	65	4/0	Copper	Non-Magnetic	EPR	Pos:	0.0119	0.0075
	2LS-1								Zero:	0.0189	0.0190

Cable Name	From Bus To Bus	In/Out Service	Qty /Ph	Length Feet	Size	------ Cable Description ------		Per Unit (100 MVA Base)			
						Cond. Type	Duct Type	Insul		R pu	jX pu
CBL-F3-4	2LS-1	In	2	241	4/0	Copper	Non-Magnetic	EPR	Pos:	0.0441	0.0277
	2LS-2								Zero:	0.0700	0.0704
CBL-F4-1	35MSG	In	2	241	4/0	Copper	Non-Magnetic	EPR	Pos:	0.0441	0.0277
	2LS-2								Zero:	0.0700	0.0704
C-P-3500	35PP1	In	1	175	4	Copper	Magnetic	PVC		24.3815	4.8003
	PP-EC1								Zero:	76.8359	11.8186
C-P-3501	PP-EC1	In	1	15	8	Copper	Magnetic	PVC	Pos:	5.2799	0.4909
	BUS-0009								Zero:	16.6400	1.2083
C-P-3502	BUS-0010	In	1	15	2	Copper	Magnetic	PVC	Pos:	7.0035	2.0282
	LP-EC1								Zero:	22.0715	4.9926
C-P-3503	35PP1	In	1	355	2	Copper	Magnetic	PVC	Pos:	31.1241	9.0137
	DSW-TX-LP-G1								Zero:	98.0872	22.1875
C-P-3504	DSW-TX-LP-G1	In	1	15	2	Copper	Magnetic	PVC	Pos:	1.3151	0.3809
	BUS-0013								Zero:	4.1445	0.9375
C-P-3505	BUS-0014	In	1	15	1/0	Copper	Magnetic	PVC		4.4379	1.8722
	LP-G1								Zero:	13.9862	4.6078
C-P3507-3510	BUS-0041	In	4	55	500	Copper	Non-Magnetic	EPR	Pos:	0.0022	0.0030
	35MVATS								Zero:	0.0035	0.0079
C-P3512-3515	35MVATS	In	4	50	500	Copper	Non-Magnetic	EPR	Pos:	0.0020	0.0027
	MH-MV1								Zero:	0.0032	0.0072
C-P3512-3515.	MH-MV1	In	4	50	500	Copper	Non-Magnetic	EPR	Pos:	0.0020	0.0027
	35MSG								Zero:	0.0032	0.0072
C-P3517	GENERATOR G-1	In	1	220	500	Copper	Non-Magnetic	EPR	Pos:	0.0351	0.0474
	35MVATS.								Zero:	0.0557	0.1270

2-Winding Transformers

Xformer Name	In/Out Service	-----------------Primary \& Secondary--------------				Nominal kVA	Z PU (100 MVA Base)		
		Bus	Conn.	Volts	FLA			R pu	jX pu
10TX-1	In	BUS-0025	D	4,160	139	1,000.0	Pos:	0.9917	5.6638
		BUS-0043	WG	480	1,203		Zero:	0.9917	5.6638
10TX-2	In	BUS-0029	D	4,160	139	1,000.0	Pos:	0.9917	5.6638
		BUS-0045	WG	480	1,203		Zero:	0.9917	5.6638
2TX-1	In	BUS-0050	D	4,160	104	750.0	Pos:	1.2496	6.5485
		2FS-3(LEFT)	WG	480	902		Zero:	1.2496	6.5485
2TX-2	In	BUS-0037	D	4,160	104	750.0	Pos:	1.2496	6.5485
		BUS-0054	WG	480	902		Zero:	1.2496	6.5485
2TX-3	In	BUS-0040	D	4,160	42	300.0	Pos:	2.3427	9.7217
		2FS-3(RIGHT)	WG	2,400	72		Zero:	2.3427	9.7217
35TX-1	In	BUS-0022	D	4,160	42	300.0	Pos:	4.5293	18.7953
		BUS-0023	WG	480	361		Zero:	4.5293	18.7953

Xformer Name	In/Out Service	----------------Primary \& Secondary--------------				Nominal kVA	Z PU (100 MVA Base)		
		Bus	Conn.	Volts	FLA			R pu	jX pu
50TX-1	In	BUS-0026	D	4,160	139	1,000.0	Pos:	0.9917	5.6638
		BUS-0046	WG	480	1,203		Zero:	0.9917	5.6638
50TX-2	In	BUS-0030	D	4,160	139	1,000.0	Pos:	0.9917	5.6638
		BUS-0048	WG	480	1,203		Zero:	0.9917	5.6638
7TX-1	In	BUS-0031	D	4,160	69	500.0	Pos:	1.2500	5.8684
		MCC-1	WG	480	601		Zero:	1.2500	5.8684
TX-LP-EC1	In	BUS-0009	D	480	36	30.0	Pos:	25.3800	69.1567
		BUS-0010	WG	208	83		Zero:	25.3800	69.1567
TX-LP-G1	In	BUS-0013	D	480	54	45.0	Pos:	30.4222	88.2356
		BUS-0014	WG	208	125		Zero:	30.4222	88.2356
XF-UTIL-GEORGIA-PDV		BUS-0042	D	24,940	116	5,000.0	Pos:	0.0697	0.8772
		BUS-0041	WG	4,160	694		Zero:	0.0697	0.8772

APPENDIX 5

SHORT CIRCUIT FAULT ANALYSIS OUTPUT REPORT

Project: WJ HOOPER GENERATOR Crowder Construction Company WJ Hooper 1075681

ANSI Complete Fault Report

A_FAULT Settings

Fault Type	3 Phase+Unbalanced	LV Duty	Yes	Int Duty	Yes
Faulted Bus	All Buses	LV Report	Complete	Int Report	Complete
Include Tap	No	Mom Duty	Yes	Solution Method	E/Z
Pre-fault Voltage	1.0000	Mom Report	Complete	NACD Option	Interpolated

Low Voltage 3 Phase and Unbalanced

Fault Location	Bus Voltage		Fault Duty		X/R	-----Asym kA-----		Sequence Impedance pu		Equivalent	
Bus Name			kA	MVA		Max RMS	Avg RMS			R	+jX
10LS-1	4,160	3 Phase:	14.71	106.0	8.05	20.36	17.66	Z1:	0.94	0.02	0.16
		SLG:	14.77	61.4	8.27	20.55	---	Z2:	0.94	---	---
		LL:	17.63	73.3	---	---	---	Z0:	0.93	---	---
LLG Gnd Return kA:	20.586	LLG:	20.57	85.6	---	---	---				
2LS-1	4,160	3 Phase:	14.49	104.4	7.04	19.54	17.12	Z1:	0.96	0.02	0.16
		SLG:	14.46	60.1	7.06	19.51	--	Z2:	0.96	---	---
		LL:	16.93	70.4	---	---	---	Z0:	0.96	---	---
LLG Gnd Return kA:	19.458	LLG:	19.59	81.5	---	---	---				
2LS-2	4,160	3 Phase:	14.54	104.7	7.24	19.72	17.23	Z1:	0.95	0.02	0.16
		SLG:	14.52	60.4	7.29	19.73	---	Z2:	0.95	---	---
		LL:	17.07	71.0	---	---	---	Z0:	0.96	---	---
LLG Gnd Return kA:	19.693	LLG:	19.79	82.3	---	---	---				
35MSG	4,160	3 Phase:	14.90	107.4	9.27	21.15	18.17	Z1:	0.93	0.02	0.16
		SLG:	15.05	62.6	9.85	21.59	---	Z2:	0.93	---	---
		LL:	18.32	76.2	---	---	---	Z0:	0.90	---	---
LLG Gnd Return kA:	21.717	LLG:	21.57	89.7	---	---	---				
35MVATS	4,160	3 Phase:	14.95	107.7	9.54	21.33	18.29	Z1:	0.93	0.02	0.16
		SLG:	15.17	63.1	10.24	21.90	---	Z2:	0.93	---	---
		LL:	18.47	76.8	---	---	---	Z0:	0.89	---	---
LLG Gnd Return kA:	22.110	LLG:	21.84	90.8	---	---	---				
35MVATS.	4,160	3 Phase:	2.86	20.6	17.62	4.43	3.69	Z1:	4.86	0.05	0.84
		SLG:	2.84	11.8	17.29	4.40	---	Z2:	4.86	---	---
		LL:	3.84	16.0	---	---	---	Z0:	4.94	---	---
LLG Gnd Return kA:	4.376	LLG:	4.42	18.4	---	---	---				

Low Voltage 3 Phase and Unbalanced

Fault Location	Bus Voltage		Fault Duty		X/R	-----Asym kA-----		Sequence Impedance pu		Equivalent	
Bus Name			kA	MVA		Max RMS	Avg RMS			R	+jX
$35 \mathrm{MVC1}$	4,160	3 Phase:	14.84	106.9	8.98	20.95	18.04	Z1:	0.94	0.02	0.16
		SLG:	14.95	62.2	9.44	21.29	---	Z2:	0.94	---	---
		LL:	18.15	75.5	---	---	---	Z0:	0.92	---	---
LLG Gnd Return kA:	21.357	LLG:	21.29	88.6	---	---	---				
35MVC2	4,160	3 Phase:	14.83	106.9	8.96	20.94	18.03	Z1:	0.94	0.02	0.16
		SLG:	14.94	62.2	9.43	21.28	---	Z2:	0.94	-	---
		LL:	18.13	75.4	---	---	---	Z0:	0.92	---	---
LLG Gnd Return kA:	21.349	LLG:	21.28	88.5	---	---	---				
35 PP 1	480	3 Phase:	5.79	4.8	3.84	6.82	6.32	Z1:	20.78	0.01	0.05
		SLG:	5.80	2.8	3.56	6.72	---	Z2:	20.78	---	---
		LL:	5.91	2.8	---	---	---	Z0:	20.71	---	---
LLG Gnd Return kA:	6.788	LLG:	6.88	3.3	---	---	---				
50LS-1	4,160	3 Phase:	14.53	104.7	7.21	19.69	17.22	Z1:	0.96	0.02	0.16
		SLG:	14.52	60.4	7.26	19.70	---	Z2:	0.96	-	---
		LL:	17.06	71.0	---	---	---	Z0:	0.96	---	---
LLG Gnd Return kA:	19.664	LLG:	19.77	82.2	---	---	---				
DSW-TX-LP-G1	480	3 Phase:	2.58	2.1	0.80	2.58	2.58	Z1:	46.59	0.08	0.07
		SLG:	1.77	0.9	0.57	1.77	---	Z2:	46.59	-	---
		LL:	2.24	1.1	---	---	---	Z0:	112.52	-	---
LLG Gnd Return kA:	1.337	LLG:	2.48	1.2	---	---	---				
GENERATOR G-1	4,160	3 Phase:	2.89	20.8	20.00	4.53	3.76	Z1:	4.81	0.04	0.83
		SLG:	2.89	12.0	20.00	4.53	---	Z2:	4.81	-	---
		LL:	3.92	16.3	---	---	---	Z0:	4.81	-	---
LLG Gnd Return kA:	4.530	LLG:	4.53	18.8	---	---	---				
LP-EC1	208	3 Phase:	2.36	0.8	1.44	2.39	2.37	Z1:	117.71	0.03	0.04
		SLG:	2.57	0.5	1.47	2.61	---	Z2:	117.71	---	---
		LL:	2.07	0.4	---	---	---	Z0:	88.03	---	---
LLG Gnd Return kA:	2.873	LLG:	2.55	0.5	---	---	---				
LP-G1	208	3 Phase:	1.98	0.7	1.65	2.03	2.01	Z1:	139.89	0.03	0.05
		SLG:	2.18	0.5	1.75	2.24	---	Z2:	139.89	---	---
		LL:	1.76	0.4	---	---	---	Z0:	102.92	---	---
LLG Gnd Return kA:	2.473	LLG:	2.21	0.5	---	---	---				
PP-EC1	480	3 Phase:	3.11	2.6	0.84	3.11	3.11	Z1:	38.70	0.07	0.06
		SLG:	2.20	1.1	0.57	2.20	---	Z2:	38.70	---	---
		LL:	2.69	1.3	---	---	---	Z0:	88.96	---	---
LLG Gnd Return kA:	1.680	LLG:	3.03	1.5	---	---	---				

Momentary 3 Phase

Fault Location Bus Name	BusVoltage	------Sym Fault Duty-----			---------Mom kA--------		--------Crest kA--------		Equivalent	
		kA	MVA	X/R	Sym*1.6	Based on X/R	Sym*2.7	Based on X/R		
									R	+jX
10LS-1	4,160	14.193	102.27	8.21	22.709	19.720	38.322	33.760	0.02	0.17
2LS-1	4,160	13.994	100.83	7.19	22.390	18.960	37.784	32.580	0.03	0.17
2LS-2	4,160	14.037	101.14	7.39	22.460	19.120	37.901	32.830	0.02	0.17
35MSG	4,160	14.373	103.56	9.44	22.997	20.470	38.807	34.900	0.02	0.17
35MVATS	4,160	14.426	103.95	9.71	23.082	20.640	38.952	35.170	0.02	0.17
35MVATS.	4,160	2.858	20.60	17.62	4.574	4.430	7.718	7.420	0.05	0.84
35MVC1	4,160	14.316	103.15	9.13	22.906	20.270	38.654	34.600	0.02	0.17
35MVC2	4,160	14.310	103.11	9.12	22.897	20.260	38.638	34.580	0.02	0.17
50LS-1	4,160	14.032	101.10	7.37	22.451	19.100	37.886	32.800	0.02	0.17
GENERATOR G-1	4,160	2.888	20.81	20.00	4.620	4.530	7.797	7.570	0.04	0.83

Momentary Unbalanced

Fault Location Bus Name	Bus Voltage		---Sym Fault Duty---		X/R	--Mom. Fault Duty--		Sequence Impedance pu	
			kA	MVA		kA*1.6	Based on X/R		
10LS-1	4,160	3 Phase:	14.193	102.27	8.21	22.709	19.720	Z1:	0.98
		SLG:	14.420	59.99	8.38	23.072	20.110	Z2:	0.98
		LL:	17.078	71.05	---	---	---	Z0:	0.93
LLG Gnd Return kA:	20.40	LLG:	20.018	83.27	---	---	---		
2LS-1	4,160	3 Phase:	13.994	100.83	7.19	22.390	18.960	Z1:	0.99
		SLG:	14.123	58.75	7.16	22.597	19.110	Z2:	0.99
		LL:	16.416	68.29	---	---	---	Z0:	0.96
LLG Gnd Return kA:	19.30	LLG:	19.073	79.35	---	---	---		
2LS-2	4,160	3 Phase:	14.037	101.14	7.39	22.460	19.120	Z1:	0.99
		SLG:	14.187	59.02	7.39	22.700	19.320	Z2:	0.99
		LL:	16.556	68.87	---	---	--	Z0:	0.96
LLG Gnd Return kA:	19.53	LLG:	19.270	80.16	---	---	---		
35MSG	4,160	3 Phase:	14.373	103.56	9.44	22.997	20.470	Z1:	0.97
		SLG:	14.691	61.11	9.96	23.506	21.110	Z2:	0.97
		LL:	17.725	73.74	---	-	---	Z0:	0.90
LLG Gnd Return kA:	21.50	LLG:	20.967	87.22	---	---	---		
35MVATS	4,160	3 Phase:	14.426	103.95	9.71	23.082	20.640	Z1:	0.96
		SLG:	14.807	61.60	10.36	23.691	21.410	Z2:	0.96
		LL:	17.876	74.37	---	---	---	Z0:	0.89
LLG Gnd Return kA:	21.89	LLG:	21.234	88.33	---	---	---		
35MVATS.	4,160	3 Phase:	2.858	20.60	17.62	4.574	4.430	Z1:	4.86
		SLG:	2.843	11.83	17.29	4.548	4.400	Z2:	4.86
		LL:	3.835	15.95	---	---	---	Z0:	4.94
LLG Gnd Return kA:	4.38	LLG:	4.416	18.37	---	---	---		
$35 \mathrm{MVC1}$	4,160	3 Phase:	14.316	103.15	9.13	22.906	20.270	Z1:	0.97
		SLG:	14.589	60.69	9.55	23.342	20.820	Z2:	0.97
		LL:	17.557	73.04	---	---	---	Z0:	0.92
LLG Gnd Return kA:	21.15	LLG:	20.696	86.10	---	---	---		
35MVC2	4,160	3 Phase:	14.310	103.11	9.12	22.897	20.260	Z1:	0.97
		SLG:	14.585	60.67	9.54	23.336	20.810	Z2:	0.97
		LL:	17.546	72.99	---	---	---	Z0:	0.92
LLG Gnd Return kA:	21.14	LLG:	20.687	86.06	---	---	---		
50LS-1	4,160	3 Phase:	14.032	101.10	7.37	22.451	19.100	Z1:	0.99
		SLG:	14.179	58.99	7.36	22.687	19.300	Z2:	0.99
		LL:	16.538	68.80	---	---	---	Z0:	0.96
LLG Gnd Return kA:	19.50	LLG:	19.245	80.06	---	-	---		
GENERATOR G-1	4,160	3 Phase:	2.888	20.81	20.00	4.620	4.530	Z1:	4.81
		SLG:	2.888	12.01	20.00	4.620	4.530	Z2:	4.81
		LL:	3.923	16.32	---	---	---	Z0:	4.81
LLG Gnd Return kA:	4.53	LLG:	4.530	18.84	---	---	---		

Interrupting 3 Phase and Unbalanced

Fault Location Bus Name	Voltage		-----Init Sym Fault-----		Equivalent		Seq. Imp. pu		-------Interrupting Fault kA-----			
			kA	X/R		+jX			2 cyc.	3 cyc.	5 cyc.	8 cyc.
10LS-1	4,160	3 Phase:	: 12.65	8.77	0.02	0.19	Z1: 1.10	3Ph.Sym:	12.65	12.65	12.65	12.68
		SLG:	13.32	8.77	---	---	Z2: 1.10	Tot:	14.83	13.10	12.67	12.65
NACD:	0.92	LL:	15.41	---	---	---	Z0: 0.93	SLG Sym:	13.32	13.32	13.32	13.32
LLG Gnd Return kA:	19.774	LLG:	18.33	---	---	---		Tot:	15.62	13.79	13.34	13.32
2LS-1	4,160	3 Phase:	: 12.50	7.72	0.03	0.19	Z1: 1.11	3Ph.Sym:	12.50	12.50	12.50	12.50
		SLG:	13.07	7.52	---	---	Z2: 1.11	Tot:	14.22	12.74	12.50	12.50
NACD:	0.92	LL:	14.86	---	---	---	Z0: 0.96	SLG Sym:	13.07	13.07	13.07	13.07
LLG Gnd Return kA:	18.762	LLG:	17.58	---	---	---		Tot:	14.79	13.28	13.07	13.07
2LS-2	4,160	3 Phase:	: 12.53	7.93	0.02	0.19	Z1: 1.11	3Ph.Sym:	12.53	12.53	12.53	12.54
		SLG:	13.12	7.76	---	---	Z2: 1.11	Tot:	14.34	12.81	12.53	12.53
NACD:	0.92	LL:	14.98	---	---	---	Z0: 0.96	SLG Sym:	13.12	13.12	13.12	13.12
LLG Gnd Return kA:	18.974	LLG:	17.73	---	---	---		Tot:	14.95	13.39	13.13	13.12
35MSG	4,160	3 Phase:	: 12.79	10.01	0.02	0.19	Z1: 1.08	3Ph.Sym:	12.79	12.79	12.79	12.84
		SLG:	13.55	10.36	---	---	Z2: 1.08	Tot:	15.51	13.49	12.88	12.79
NACD:	0.92	LL:	15.93	---	---	---	Z0: 0.90	SLG Sym:	13.55	13.55	13.55	13.55
LLG Gnd Return kA:	20.778	LLG:	19.15	---	---	---		Tot:	16.56	14.39	13.70	13.55
35MVATS	4,160	3 Phase:	: 12.85	10.32	0.02	0.19	Z1: 1.08	3Ph.Sym:	12.85	12.85	12.85	12.93
		SLG:	13.66	10.78	---	---	Z2: 1.08	Tot:	15.67	13.63	12.98	12.85
NACD:	0.92	LL:	16.08	---	---	---	Z0: 0.89	SLG Sym:	13.66	13.66	13.66	13.66
LLG Gnd Return kA:	21.152	LLG:	19.41	---	---	---		Tot:	16.84	14.62	13.88	13.66
35MVATS.	4,160	3 Phase:	: 2.86	17.62	0.05	0.84	Z1: 4.86	3Ph.Sym:	2.86	2.86	2.86	2.86
		SLG:	2.84	17.29	---	---	Z2: 4.86	Tot:	3.89	3.30	2.95	2.86
NACD:	0.00	LL:	3.84	---	---	---	Z0: 4.94	SLG Sym:	2.84	2.84	2.84	2.84
LLG Gnd Return kA:	4.376	LLG:	4.42	---	---	---		Tot:	3.96	3.37	3.09	2.91
35 MVCl 1	4,160	3 Phase:	: 12.74	9.68	0.02	0.19	Z1: 1.09	3Ph.Sym:	12.74	12.74	12.74	12.78
		SLG:	13.46	9.93	---	---	Z2: 1.09	Tot:	15.31	13.37	12.81	12.74
NACD:	0.92	LL:	15.78	---	---	---	Z0: 0.92	SLG Sym:	13.46	13.46	13.46	13.46
LLG Gnd Return kA:	20.444	LLG:	18.90	---	---	---		Tot:	16.30	14.18	13.55	13.46
35MVC2	4,160	3 Phase:	: 12.74	9.68	0.02	0.19	Z1: 1.09	3Ph.Sym:	12.74	12.74	12.74	12.78
		SLG:	13.46	9.92	---	---	Z2: 1.09	Tot:	15.31	13.37	12.80	12.74
NACD:	0.92	LL:	15.78	---	---	---	Z0: 0.92	SLG Sym:	13.46	13.46	13.46	13.46
LLG Gnd Return kA:	20.441	LLG:	18.90	---	---	---		Tot:	16.29	14.17	13.54	13.46
50LS-1	4,160	3 Phase:	: 12.53	7.90	0.02	0.19	Z1: 1.11	3Ph.Sym:	12.53	12.53	12.53	12.53
		SLG:	13.12	7.73	---	---	Z2: 1.11	Tot:	14.32	12.80	12.53	12.53
NACD:	0.92	LL:	14.96	---	---	---	Z0: 0.96	SLG Sym:	13.12	13.12	13.12	13.12
LLG Gnd Return kA:	18.947	LLG:	17.71	---	---	---		Tot:	14.93	13.37	13.12	13.12
GENERATOR G-1	4,160	3 Phase:	: 2.89	20.00	0.04	0.83	Z1: 4.81	3Ph.Sym:	2.89	2.89	2.89	2.89
		SLG:	2.89	20.00	---	---	Z2: 4.81	Tot:	4.02	3.41	3.04	2.89
NACD:	0.00	LL:	3.92	---	---	---	Z0: 4.81	SLG Sym:	2.92	2.92	2.92	2.92
LLG Gnd Return kA:	4.530	LLG:	4.53	---	---	---		Tot:	4.13	3.53	3.23	3.02

APPENDIX 6

DEVICE EVALUATION REPORT

Device Evaluation Summary

Color Code	Bus Count	Percentage	
Pass	13	100%	These devices were found to have acceptable short circuit interrupting ratings when compared to system fault duties.
Marginal	0	0%	WARNING! The calculated short circuit current levels at these locations exceed 95\% of the interrupting ratings! Equipment aging or small changes to the system could result in equipment that will not adequately interrupt faults when required to do so. Replacing the equipment or modifying the system configuration to reduce the available fault levels should be considered. Additional calculations and analysis should be performed when significant changes to the system are made.
Fail	0	0%	DANGER! These devices have inadequate interrupting ratings and should be replaced immediately or the system configuration should be changed because the devices could fail catastrophically whenever the conditions described for this case in report section 1.5 exist. The equipment failure could cause injury or death to personnel near the equipment.
Series	0	0%	These circuit breakers have an adequate series interrupting rating the manufacturer has produced them with a series rating or if the markings required to allow a series rating were added to the equipment. Those markings should meet the requirements given in NFPA 70 (National Electric Code) Article 110.22.
Total:	$\mathbf{1 3}$	$\mathbf{1 0 0 \%}$	

Device Evaluation

ERS \# 1075681
Client: Crowder Construction Company
Project: WJ Hooper

Bus Name	Voltage (V)	Device Type	Interrupt Rating (kA)	Series Rating (kA)	Momentary Rating (kA)	Calculated Interrupt (kA)	Calculated Momentary (kA)	Interrupt Rating (\%)	Momentary Rating (\%)	Evaluation	Possible Corrective Action
10SWBD-LEFT	480	Square D NW16N	65	0	0	17.33	0	27 \%	0 \%	Pass	
10SWBD-RIGHT	480	Square D NW16N	65	0	0	16.6	0	26 \%	0 \%	Pass	
2MCC-RIGHT	480	Square D PX	100	0	0	14.89	0	15 \%	0 \%	Pass	
35MSG	4,160	Square D VR-05035-12, VR-05035-20	46.91	0	78	13.27	21.11	28 \%	27 \%	Pass	
35MVATS	4,160	Square D VR-05035-20	46.91	0	78	13.37	21.41	29 \%	27 \%	Pass	
35MVATS.	4,160	Square D VR-05035-12	46.91	0	78	2.86	4.43	6 \%	6 \%	Pass	
35PP1	480	Square D EJ, LCL	65	0	0	5.89	0	9 \%	0 \%	Pass	
50SWBD-LEFT	480	Square D NW16N	65	0	0	16.26	0	25 \%	0 \%	Pass	
50SWBD-RIGHT	480	Square D NW16N	65	0	0	17.06	0	26 \%	0 \%	Pass	
DSW-TX-LP-G1	480	Gould Shawmut TRS	100+	0	0	2.58	0	1 \%	0 \%	Pass	
LP-EC1	208	Cutler-Hammer BAB	10	0	0	2.57	0	26 \%	0 \%	Pass (No Lib)	
LP-G1	208	Siemens SEAB/SEAM	65	0	0	2.18	0	3%	0 \%	Pass	
PP-EC1	480	Cutler-Hammer FD, JD	35	0	0	3.11	0	9 \%	0 \%	Pass	

APPENDIX 7

RECOMMENDED DEVICE SETTINGS

Electrical Reliability Services

Client: Crowder Construction Company
Project: WJ Hooper
Job \#: 1075681

Appendix 6
 Recommended Overcurrent
 Relay Information

Device Location	Device Name in Model /Trip Type	$\begin{gathered} \text { CT } \\ \text { Ratio } \end{gathered}$		Device Description	Existing Settings (Range) Setting	Recommended Settings (Range) Setting
35MSG	RY-35MVC1	400/5	GE MULTILIN		Phase	Phase
	Electronic		735		Pickup(Lo) 100% (400A)	Pickup(Lo) 100% (400A)
			50/51		ANSI Mod Inverse 1; 10 (S;M)	ANSI Mod Inverse 1; 10 (S M)
					Ground	Ground
					Pickup(Lo) 15% (7.5A)	Pickup(Lo) 15% (7.5A)
					ANSI Ext Inverse 1; 3 (F ; $\mathrm{M}^{\text {) }}$	ANSI Ext Inverse 1; 3 (S : M)
35MSG					Phase	
	RY-35MVC2	$400 / 5$	GE MULTILIN			Phase
	Electronic		735		Pickup(Lo) 100% (400A)	Pickup(Lo) 100% (400A)
			50/51			ANSI Mod Inverse 1; 10 ($\mathrm{S} ; \mathrm{M}$)
					Ground	Ground
					Pickup(Lo) 15% (7.5A) ANSI Mod Inverse 1; 3 (S;M)	Pickup(Lo) 15% (7.5A)
						ANSI Mod Inverse 1; 3 ($\mathrm{S} ; \mathrm{M}$)
35MSG						
	RY-35MVSG-MAIN	$1200 / 5$	GE MULTILIN		Phase	Phase
	Electronic		750		Phase OC PU 1 (1200A)	Phase OC PU 1 (1200A)
			50/51		Ext Inverse 1; 1 (S ; M)	Ext Inverse 1; 1 ($\mathrm{F} ; \mathrm{M}$)
					Phase Inst OC PU 10 (12000A)	Phase Inst OC PU 10 (12000A)
					Ground	
					Ground OC PU 1 (50A)	Ground Ground OC PU 1 (50A)
					IAC Very Inv 2.72; 1 (S;M)	Ground OC PU 1 (50A) IAC Very Inv 2.72; 1 (S;M)
					Ground Inst OC PU 14.29 (714.5A)	Ground Inst OC PU 14.29 (714.5A)
35MSG	RY-F3-1	$600 / 5$	GE MULTLLIN		Phase	Phase
	Electronic		735		Pickup(Lo) 100% (600A)	Pickup(Lo) 100% (600A)
			50/51		ANSI Mod Inverse $0.5 ; 8$ ($\mathrm{F} ; \mathrm{M}$)	ANSI Mod Inverse 0.5; 8 ($\mathrm{F} ; \mathrm{M}$)
					Ground	Ground
					Pickup(Lo) 15% (7.5A)	Pickup(Lo) 15% (7.5A)
					ANSI Mod Inverse 1; 2 ($\mathrm{S} ; \mathrm{M}$)	ANSI Mod Inverse 1; 2 ($\mathrm{S} ; \mathrm{M}$)
35MSG	RY-F4-1	$600 / 5$	GE MULTILIN		Phase	Phase
	Electronic		735		Pickup(Lo) 100% (600A)	Pickup(Lo) 100% (600A)
			50/51		ANSI Mod Inverse 0.5; 8 (S;M)	ANSI Mod Inverse 0.5; 8 (S;M)
					Ground	
					Pickup(Lo) 15% (7.5A)ANSI Mod Inverse 1; 2 ($\mathrm{S} ; \mathrm{M}$)	Pickup(Lo) 15% (7.5A) ANSI Mod Inverse 1; 2 (S;M)

Electrical Reliability Services
Client: Crowder Construction Company

Project: WJ Hooper

Job \#: 1075681
Appendix 6

Recommended Overcurrent

 Relay Information| Device Location | Device Name in Model /Trip Type | $\begin{gathered} \text { CT } \\ \text { Ratio } \end{gathered}$ | | Device Description | | Existing Settings (Range) Setting | Recommended Settings (Range) Setting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 35MVATS | RY-35-52-F1 | $2000 / 5$ | SEL | | (New Device) | | 51PIP, (0.5-16 x CTR) 3 (1200A) |
| | Electronic | | 751 | | | | U4, Extremely Inverse 1.59 |
| | | | 50P/51P, 5A nom. | | | | 50PIP, (0.5-100 x CTR) 34.5 (13800A) |
| | | | | | | | 50PID, (0.001-5s) 0.001 sec |
| 35MVATS. | | | | | | | |
| | RY-35-52-G1 | $600 / 5$ | SEL | | (New Device) | | Phase |
| | Static Relay | | 700G | | | | 50P1P 25 (3000A) |
| | | | 50P/51P, 5A | | | | 50 PID 0.5 sec |
| | | | | | | | Ground |
| | | | | | | | 50G1P 1.67 (200.4A) |
| | | | | | | | 50 GID 1.5 sec |
| 35MVATS. | RY-35-52-GM | $1200 / 5$ | SEL | | (New Device) | | 51PIP, (0.5-16 x CTR) 5 (1200A) |
| | Electronic | | 751 | | | | U3, Very Inverse 1.03 |
| | | | 50P/51P, 5A nom. | | | | 50 PIP , (0.5-100 x CTR) 34.5 (8280A) |
| | | | | | | | 50P1D, (0.001-5s) 0.001 sec |
| | | | | | | | |
| 35MVATS. | RY-35-52-TG/LB | $600 / 5$ | SEL | | (New Device) | | 51P1P, (0.5-16 x CTR) 6 (720A) |
| | Electronic | | 751 | | | | U3, Very Inverse 3.0 |
| | | | 50P/51P, 5A nom. | | | | 50P1P, (0.5-100 x CTR) 10 (1200A) |
| | | | | | | | 50P1D, (0.001-5s) 0.001 sec |
| | | | | | | | |
| 35MVATS | RY-35-52-UM | $2000 / 5$ | SEL | | (New Device) | | Phase |
| | Electronic | | 751 | | | | 51PIP, (0.5-16 x CTR) 3 (1200A) |
| | | | 50P/51P, 5A nom. | | | | U4, Extremely Inverse 3.0 |
| | | | | | | | 50PIP, (0.5-100 x CTR) 69 (27600A) |
| | | | | | | | 50P1D, (0.001-5s) 0.001 sec |
| | | | | | | | Ground |
| | | | | | | | 51GIP, (0.5-16 x CTR) 1.25 (75A) |
| | | | | | | | U2, Inverse 2.17 |
| | | | | | | | $50 \mathrm{GIP},(0.5-100 \times \mathrm{CTR}) 20$ (1200A) |
| | | | | | | | $50 \mathrm{GID},(0.001-5 \mathrm{~s}) 0.001 \mathrm{sec}$ |

Electrical Reliability Services, Inc.
Client: Crowder Construction Company
Project: WJ Hooper
Appendix 6

Job \#: 1075681

Existing and Recommended

Circuit Breaker Settings

Device Location	Device Name in Model / Trip Type	Device Manufacturer / Description / Ampacity Range	Frame Model	Frame (A) Trip (A) Plug (A)	Existing Settings Type (Range) Setting (Value)	Recommended Settings Type (Range) Setting (Value)
10SWBD-LEFT	10SWBD MAIN 1	LSI, 400-6000AS, UL	NW16N	1600.0 A	Phase	Phase
	Static Trip			800.0 A	LTPU (A);LTD 1 (800A); 0.5	LTPU (A);LTD 1 (800A); 0.5
				800.0 A	STPU 1.5 (1200A)	STPU 1.5 (1200A)
					STD 0.1 ((1^s T Off)	STD 0.1 (I^s T Off)
					INST ($\mathrm{NW}^{* * N \text {) } 2 \text { (1600A) }{ }^{\text {a }} \text { (}{ }^{\text {a }} \text { (}}$	INST (NW**N) 2 (1600A)
					Ground	Ground
					GFPU ($500-1200 \mathrm{~A}$) A (500A)	GFPU ($500-1200 \mathrm{~A}$) A (500A)
					GFD ($0-0.4$) 0.4 ($\wedge^{\wedge} \mathrm{s}$ T Off)	GFD ($0-0.4$) 0.4 (${ }^{\wedge} \mathrm{s}$ T Off)
10SWBD-RIGHT	10SWBD MAIN 2	LSI, 400-6000AS, UL	NW16N	1600.0A	Phase	Phase
	Static Trip			800.0 A	LTPU (A);LTD 1 (800A); 0.5	LTPU (A);LTD 1 (800A); 0.5
				800.0 A	STPU 1.5 (1200A)	STPU 1.5 (1200A)
					STD 0.1 (${ }^{\text {® }}$ S T Off)	STD 0.1 (1^s T Off)
					INST (WW**N) $^{\text {2 }}$ (1600A)	INST (WW**N) $^{\text {2 }}$ (1600A)
					Ground	Ground
					GFPU ($500-1200 \mathrm{~A}$) A (500A)	GFPU ($500-1200 \mathrm{~A}$) A (500A)
					GFD ($0-0.4$) 0.4 ($\wedge^{\wedge} \mathrm{s}$ T Off	$\operatorname{GFD}(0-0.4) 0.4\left(\Lambda^{\wedge} \mathrm{s}\right.$ T Off
2MCC-RIGHT	2MCC MAIN 2	LSI, 600-1600A	PX	1200.0A	Phase	Phase
	Static Trip			1200.0A	LTPU (0.5-1.0 x P) 0.8 (960A)	LTPU (0.5-1.0 x P) 0.8 (960A)
				1200.0A	LTD ($2-24$ Sec.) 4.5	LTD ($2-24$ Sec.) 4.5
					STPU (2-8 x P) 8.0 (9600A)	STPU (2-8 x P) 8.0 (9600A)
					STD (0.1-0.5 Sec.) . 5 ($\wedge^{\text {s }}$ T On)	STD (0.1-0.5 Sec.) . 5 ($\mathrm{I}_{\mathrm{s}} \mathrm{T}$ T On)
					INST ($2.5-8 \times$ P) 8.0 (9600A)	INST ($2.5-8 \times$ P) 8.0 (9600A)
					Ground	Ground
					$\operatorname{GFPU}(0.2-0.75 \times \mathrm{S}) 0.2$ (240A)	$\operatorname{GFPU}(0.2-0.75 \times \mathrm{S}) 0.2(240 \mathrm{~A})$
35PP1	35PP1 MAIN	300A-600A, 2-3 Pole	LCL	500.0A	Thermal Curve (Low)	Thermal Curve (Low)
	Thermal Magnetic			500.0 A	INST, (Low-High) Low (2500) (2500A)	INST, (Low-High) Low (2500) (2500A)
				500.0 A		
50SWBD-LEFT	50SWBD MAIN 1	LSI, 400-6000AS, UL	NW16N	1600.0A	Phase	Phase
	Static Trip			800.0 A	LTPU (A);LTD 0.7 (560A); 8	LTPU (A);LTD 0.7 (560A); 8
				800.0 A	STPU 6 (3360A)	STPU 6 (3360A)
					STD 0.1 (${ }^{\text {s }}$ S T Off)	STD 0.1 (${ }^{\text {s }}$ S Off)
					INST OR (NW**N) Fixed (40000A)	INST OR (NW**N) Fixed (40000A)
					Ground	Ground
					$\operatorname{GFPU}(500-1200 \mathrm{~A}) \mathrm{J}$ (1200A)	$\operatorname{GFPU}(500-1200 \mathrm{~A}) \mathrm{J}(1200 \mathrm{~A})$
					GFD ($0-0.4$) 0.4 (I^s T Off)	GFD ($0-0.4$) 0.4 ($\mathrm{I}^{\wedge} \mathrm{s}$ T Off)

Electrical Reliability Services, Inc.
Client: Crowder Construction Company
Project: WJ Hooper
Appendix 6

Job \#: 1075681

Device Location	Device Name in Model / Trip Type	Device Manufacturer / Description / Ampacity Range	$\begin{aligned} & \text { Frame/ } \\ & \text { Model } \end{aligned}$	$\begin{aligned} & \text { Frame (A) } \\ & \text { Trip (A) } \\ & \text { Plug (A) } \\ & \hline \end{aligned}$	Existing Settings Type (Range) Setting (Value)	Recommended Settings Type (Range) Setting (Value)
50SWBD-RIGHT	50SWBD MAIN 2 Static Trip	LSI, 400-6000AS, UL	NW16N		Phase LTPU (A):LTD 0.7 (560A); 8 STPU 6 (3360A) STD 0.1 (INs T Off) INST OR (NW*N) Fixed (40000A) Ground $\operatorname{GFPU}(500-1200 \mathrm{~A}) \mathrm{J}(1200 \mathrm{~A})$ GFD ($0-0.4$) 0.4 ($\mathrm{\Lambda}_{\mathrm{s}} \mathrm{T}$ Off)	Phase LTPU (A):LTD 0.7 (560A); 8 STPU 6 (3360A) STD 0.1 (IAs T Off) INST OR (NW**N) Fixed (40000A) Ground $\operatorname{GFPU}(500-1200 \mathrm{~A}) \mathrm{J}(1200 \mathrm{~A})$ GFD ($0-0.4$) $0.4\left({ }^{\wedge} \mathrm{s}\right.$ T Off $)$
LP-G1	CB-LP-GI-MN Thermal Magnetic	125AF, 125AS, 2-3 Poles	SEAB/SEAM	$\begin{aligned} & \text { 125.0A } \\ & 125.0 \mathrm{~A} \\ & 125.0 \mathrm{~A} \end{aligned}$	Thermal Curve Fixed (125A) INST Fixed (1250A)	Thermal Curve Fixed (125A) INST Fixed (1250A)
PP-EC1	CB-PP-ECl-MN Thermal Magnetic	70-250A	J	$\begin{aligned} & 150.0 \mathrm{~A} \\ & 150.0 \mathrm{~A} \\ & 150.0 \mathrm{~A} \end{aligned}$	Thermal Curve (Fixed) INST (5-10 x Trip) 5 (750A)	Thermal Curve (Fixed) INST (5-10 x Trip) 5 (750A)

APPENDIX 8

TCC's

$0.5 \quad 1$
10
응
\geqq
흘

4160V $2500 \mathrm{~kW} / 3125 \mathrm{kVA}$
GENERATOR G-1
1-500/ph Copper
220ft
523A
RY-35-52-G1
700G
600 / 5 A
Settings
Phase
50P1P $25(3000 \mathrm{~A})$
Ground
$50 \mathrm{G1D} 1.5 \mathrm{sec}$

Actual Current $=$ Displayed Current $\times 100$ at 4160 V

CURRENT IN AMPERES

$0.5 \quad 1$
10
응
\cong
를

[^1]

Actual Current $=$ Displayed Current $\times 100$ at 4160 V

```
&
    SQUARED
    VR
    Settings
CORY-35-52-F1
    SEL
    751A
    2000 / 5 A
    Settings
        51P1P, (0.5-16x CTR) 3(1200A)
        U4, Extremely Inverse 1.59
        50P1P, (0.5-100 x CTR) 34.5 (13800A)
        50P1D, (0.001-5s) 0.001 sec
    C-P3512-3515
    4-500/ph Copper
    50ft
    1748A
    MH-MV1
    4160V
    C-P3512-3515.
    4-500/ph Copper
    50ft
    2552A
    35MVSG-MAIN
        SQUARED
    VR
    Settings
& RY-35MVSG-MAIN
    GEMULTILIN
    750
        1200 / 5 A
        Settings
    Phase
        Phase OC PU 1 (1200A)
        Ext Inverse 1;1 (S;M)
        Phase Inst OC PU 10 (12000A)
        Ground
            Ground OC PU 1 (50A)
            IAC Very Inv 2.72;1(S;M)
            IAC Very Inv 2.72; 1 (S;M)
```


Actual Current $=$ Displayed Current $\times 10$ at 4160 V

Actual Current $=$ Displayed Current $\times 10$ at 4160 V

APPENDIX 9

ARC FLASH DATA/SUMMARY

Arc Flash Summary

Hazard Level	Count	Percentage	
$0-1.2 \mathrm{cal} /^{2} \mathrm{~cm}^{2}$	1	7%	Long sleeve shirt \& pants or coverall (nonmelting or untreated natural fiber), safety glasses/goggles, leather gloves, hearing protection
$1.2-12 \mathrm{cal} / \mathrm{cm}^{2}$	11	79%	Arc-rated (AR) Iong sleeve shirt \& AR pants or AR coverall or AR flash suit, AR face shield \& AR balaclava or AR flash suit hood, hard hat, safety glasses/goggles, hearing protection, leather gloves, leather footwear
$>12 \mathrm{cal} / \mathrm{cm}^{2}$	2	14%	Arc-rated (AR) long sleeve shirt \& AR pants or AR coverall and/or AR flash suit, AR flash suit hood, AR gloves, hard hat, safety glasses/goggles, hearing protection, leather footwear
Inadequate	0	0%	Overdutied equipment from the short-circuit evaluation
Total:	$\mathbf{1 4}$	$\mathbf{1 0 0 \%}$	

Arc Flash Table

Date:

(Based on Recommended settings)

ERS \# 1075681 Client: Crowder Construction Company
Project: WJ Hooper

Bus Name	Protective Device Name	Voltage (V)	Bus Bolted Fault (kA)	Prot Dev Bolted Fault (kA)	Prot Dev Arcing Fault (kA)	$\begin{gathered} \text { Trip/Delay } \\ \text { Time } \\ \text { (sec) } \\ \hline \end{gathered}$	Equip Type	$\begin{array}{\|c} \text { Electrod } \\ e \\ \text { Config } \\ \hline \end{array}$	Box Width (in)	Box Height (in)	Box Depth (in)	$\begin{aligned} & \text { Gap } \\ & (\mathrm{mm}) \end{aligned}$	Glove Class	Arc Flash Boundary (in)	Working Distance (in)	Limited Approach (in)	Restricted Approach (in)	Scenario	Incident Energy (cal/cm ${ }^{2}$)	PPE Level
10LS-1	RY-35MVSG-MAIN	4,160	14.710	11.590	10.220	0.117	SWG	HCB	36	36	36	104	1	89	36	60	26	Normal	5.66	1.2-12 $\mathrm{cal}^{1} \mathrm{~cm}^{2}$
2LS-1	RY-F4-1	4,160	14.490	5.710	5.030	1.049	SWG	HCB	36	36	36	104	1	89	36	60	26	Normal	5.63	$1.2-12 \mathrm{cal} / \mathrm{cm}^{2}$
2LS-2	RY-F3-1	4,160	14.540	4.410	3.890	1.167	SWG	HCB	36	36	36	104	1	89	36	60	26	Normal	5.64	$1.2-12 \mathrm{cal} / \mathrm{cm}^{2}$
35MSG (LineSide)	RY-35-52-F1	4,160	14.900	11.740	10.080	0.186	SWG	HCB	36	36	36	104	1	103	36	60	26	Normal	7.33	$1.2-12 \mathrm{cal} / \mathrm{cm}^{2}$
35MVATS (LineSide)	MaxTripTime @2.0s	4,160	14.950	11.800	10.430	2.000	SWG	HCB	36	36	36	104	1	324	36	60	26	Normal	51.95	$>12{\mathrm{cal} / \mathrm{cm}^{2}}$
35MVC1	RY-35MVC1	4,160	6.010	4.110	3.640	1.917	MCC	HCB	26	26	26	104	1	93	36	60	26	Emergency	6.11	1.2-12 $\mathrm{cal}^{2} \mathrm{~cm}^{2}$
35MVC2	RY-35MVC2	4,160	6.010	4.740	4.200	1.917	MCC	HCB	26	26	26	104	1	93	36	60	26	Emergency	6.11	$1.2-12 \mathrm{cal} / \mathrm{cm}^{2}$
35PP1 (LineSide)	RY-35MVC2	480	5.790	5.300	4.160	1.917	PNL	VCBB	20	20	9	25	00	91	18	42	12	Normal	22.51	$>12{\mathrm{cal} / \mathrm{cm}^{2}}$
50LS-1	RY-F4-1	4,160	14.530	4.530	4.000	1.152	SWG	HCB	36	36	36	104	1	89	36	60	26	Normal	5.63	1.2-12 cal/cm ${ }^{2}$
DSW-TX-LP-G1	CB-DSW-TX-LP-G1-FDR	480	2.580	2.580	1.760	0.537	PNL	VCBB	20	20	9	25	00	24	18	42	12	Normal	2.06	$1.2-12 \mathrm{ca} / \mathrm{cm}^{2}$
GENERATOR G-1	MaxTripTime @2.0s	4,160	6.000	1.300	1.150	2.000	SWG	HCB	36	36	36	104	1	91	36	60	26	Emergency	5.85	$1.2-12 \mathrm{cal} / \mathrm{cm}^{2}$
LP-EC1	CB-PP-EC1-FDR	208	2.360	2.360	1.100	2.000	PNL	VCBB	20	20	9	25	00	37	18	42	12	Normal	4.42	$1.2-12 \mathrm{ca} / \mathrm{cm}^{2}$
LP-G1	CB-LP-G1-MN	208	1.980	1.980	0.920	2.000	PNL	VCBB	20	20	9	25	00	33	18	42	12	Normal	3.64	$1.2-12 \mathrm{ca} / \mathrm{cm}^{2}$
PP-EC1	CB-PP-EC1-FDR	480	3.110	3.110	2.410	0.017	PNL	VCBB	20	20	9	25	00	4	18	42	12	Normal	0.09	0-1.2 $\mathrm{cal}^{\text {/ }} \mathrm{cm}^{2}$

APPENDIX 10

ANALYSIS MODEL ONE-LINE DIAGRAM

[^0]: ${ }^{1}$ Including any applicable X/R multiplication factors

[^1]: き○ RY-35-52-G
 ${ }_{\text {SEL }}$ ROOG
 700 G
 $600 / 5 \mathrm{~A}$
 Settings
 Shase
 50P1P 25 (3000A)
 50P1D 0.5 sec
 Ground
 50G1P 1.67 (200.4A)
 50G1D 1.5 sec
 35-52-G1
 $\left.+\quad \begin{array}{l}\text { SQUARE D }\end{array}\right]$
 SQUARE D
 VR
 Settings
 ${ }_{-}^{35 M}$ 3VATS
 $\overbrace{\text { Open }}^{4} 4160 \mathrm{~V}$
 35-52-GM
 SQUARE D
 SQU
 VR
 Setin
 Settings
 £○RY-35-52-GM
 SEL
 751 A
 751 A
 1200 / 5 A
 Settings
 51P1P, ($0.5-16 \times$ CTR) 5 (1200A
 U3, Very Inverse 1.03
 50 P 1 P , ($0.5-100$ x CTR) 34.5 (8280 A) 50P1D, (0.001-5s) 0.001 sec

 き○RY-35-52-UM
 SEL
 751A
 $2000 / 5 \mathrm{~A}$
 Settings
 Settings
 Phase
 Phase
 51P1P, ($0.5-16 \times$ CTR) 3 (1200A) U4, Extremely Inverse 3.0
 50P1P, ($0.5-100 \times$ CTR) 69 (27600A)
 50P1D, (0.001-5s) 0.001 sec
 Ground
 51G1P, ($0.5-16 \times$ CTR) 1.25 (500A)
 U2, Inverse 2.17
 50G1P, ($0.5-100 \times$ CTR) 20 (8000A)
 50GID, (0.001-5s) 0.001 sec

 35MVATS

