Transmittal Letter

Signed: Celeste Figueroa

ESAD,LLC Electrical Engineering

Shop Drawing Review

REVIEW OF SUBMITTAL
REVIEWED ACCEPTED \quad X REVIEWED WITH COMMENT
REJECTED
RESUBMIT AS INDICATED
Review is for conformance with only the general concepts of design
and information given, or noted and acknowledged as exceptions on
the submittal. The contractor is responsible for compliance with all
requirements of the specifications and drawings, including but not
limited to, dimensions, ratings, features, methods of construction and
fabrication and coordination and fit with the building and work of
others as installed.
BY: David M. Zimmer, P.E.

Date: August 8, 2022
Project: Jefferson WRF
Submittal \#
Submittal: Continuous Belt Screening Headworks, Inc.

Comments:

1. Bar Screen Control Panel - Reviewed with Comment
a. Provide auxiliary sets of contacts for bar screen fault and compactor fault. Signals will be sent back to Owner's SCADA Panel.

Jefferson WPCP

Submittal

Headworks ${ }^{\circledR}$ MS2 $^{\text {TM }}$ Bar Screen Screwpactor ${ }^{\text {r" }}$ SW220

 Reference Specification Section 462116

 Reference Specification Section 462116 Headworks Project B-2021-00544

Dated 07/15/2022
Rev. 0
Owner:
City of Jefferson, Georgia
Ship To:
Jefferson Water Reclamation Facility
320 Kissam St.
Jefferson, GA 30549
Installing Contractor:
City of Jefferson
147 Athens Street
Jefferson, GA 30549
Manufacturer:
Headworks Inc.
11000 Brittmoore Park Drive
Houston, TX 77041
+1 7136476667
Manufacturer's Representative:
Kazmier and Associates, Inc.
6575-B Industrial Way
Alpharetta, GA 30004
+1 8657243914

DISCLAIMER

This submittal is prepared based on the information provided on the specifications. Dimensions provided shall be checked and approved by others. Headworks Inc. does not take responsibility for equipment not correctly fitting in the channel(s) in the event that the concrete and site dimensions in actuality differ from the information provided to Headworks upon which this submittal is based. The actual dimensions must be provided to Headworks Inc., prior to preparation of these submittals. Please note that in the event that changes are made to the information relating to the channel dimensions which necessitate revision of submittals already prepared and/or alter the dimensions of the equipment as quoted in our bid, these changes may result in additional charges.

This submittal and information contained within this submittal, such as drawings, cutsheets, and other data may be privileged, confidential, and protected from disclosure. If you are not the intended recipient, an employee, or agent responsible for delivering this message to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender immediately and delete the original file from your computer.

Table of Contents

 Jefferson WPCP
Headworks ${ }^{\circledR}$ MS2 $^{\text {TM }}$ Bar Screen and Screwpactor ${ }^{\text {TM }}$ SW220

Section 1	- SCOPE Of SUPPLY - General Arrangement Drawings - Component Drawings - Head Loss Calculation
Section 2	- Description for Section 2 - Jefferson WPCP Specifications with Checks and Clarifications - Section 462119 - Notes, Clarifications and/or Exceptions - Section 462119 - Headworks Standard Specifications for the MS2 ${ }^{\text {tm }}$ Bar Screen - Headworks Standard Specifications for the Screwpactor SW220 tm
Section 3	- Headworks ${ }^{\oplus}$ MS2 ${ }^{\text {tM }}$ Bar Screen Motor and Gear Reducer Data - Take-up Bearing Data Sheet
Section 4	- Headworks ${ }^{\circledR}$ SCrewpactor $^{\text {TM }}$ SW220 Motor and Gear Reducer Data - ASCO Solenoid Valve Cut Sheets
Section 5	- Controls Submittal
Section 6	- Spare Parts Listing - Storage Instructions for MS2 ${ }^{\text {TM }}$ Bar Screen and Screwpactor ${ }^{\text {TM }}$ SW220 - Service Center Locations
Section 7	- Warranty Information

Section 1

Scope of Supply

General Arrangement Drawings Component Drawings Head Loss Calculation

Scope of Supply

Scope of Supply for Jefferson WPCP

Items and services to be supplied are:

- One (1) Lot, Headworks ${ }^{\circledR}$ MS2 ${ }^{\text {TM }}$ Bar Screen, Pivot Type, Bar Spacing to be 0.1875 Inch. Front enclosed above the channel coping level.
- One (1) Lot, Headworks ${ }^{\circledR}$ Screwpactor ${ }^{\text {TM }}$ SW220
- One (1) Lot, Spare Parts as Listed below for the Headworks ${ }^{\circledR}$ Bar Screen:
- One (1) each, Strainer
- One (1) lot, Set of fuses for each fuse rating
- One (1) lot, Lamp lenses
- One (1) Lot Pivot Stands for the MS2 ${ }^{\text {TM }}$ Bar Screen
- One (1) each, 1" ASCO Solenoid Valve for the Screwpactor's Wash Water
- One (1) each, $3 / 4$ " ASCO Solenoid Valve for the Screwpactor's Flush Water
- One (1) each, NEMA 7 Local Control Stations for the MS2 ${ }^{\text {TM }}$ Bar Screen and Screwpactor ${ }^{\text {TM }}$ SW220 with Estop pushbutton
- One (1) each, NEMA 4X Main Control Panel Enclosure for the MS2 ${ }^{\text {TM }}$ Bar Screen and Screwpactor ${ }^{\text {TM }}$ SW220
- Two (2) each, XPS- 15 Transducers
- One (1) Lot, Installation, Operation and Maintenance Training.
- One (1) Lot, Installation, Operation and Maintenance Manuals.

General Arrangement Drawings

APPROVALINFORMATON		Headrungs INTERNATIONAL 11000 Brittmoore Park. Dr. Houston, TX 77041 www.headworksintl.com	GENERAL ARRANGEMENT				
APPROVED BY:	CF		PLaN: Jffereson	LOCATON: GA			
DATE:	06606/2022		PROJFCT NO: B -0000-12345				
CHECKED BY:	Jk		DRAWING NO: JEFA-GA				
DAEE:	06,06/2022	UNLESS NOTED OTHERWISE:DIMENSIONS ARE IN FEET \& INCHE	($) \square$	WEIGHT:	SCALE:	Rev	SHEE:
DRAWNBY:	${ }_{\text {06,06/2022 }}^{\text {R/W }}$			- LB	1:64	1	1 아 7
6		1	7		8		

Company Confidential: All the information contained in this document is the property of Headworks Inc.t the design concepts and information contained herein are proprietary yo Headworks Intl. they are not
transferable and must be used only for the purpose for which this document is submitted, they may not be disclosed reproduced loan for use in any other manner without the express witten consent of Headworks intl.

These dimensions are planned dimensions, can not provide field verify dimensions the structure is not constructed.
umpster mensions ane assumed, a fabricated dumpster to match mensi a shown car bed
ection - 90 degrees from what's shown below, see construction plans.
CPERATNG FLOOR CHANNEL DEPTH
ChanNel invert

SECTION C-C SCALE 1: 64

DETAIL D
SCALE 1: 18

DRAWNBY:	R.W	$\frac{\text { Handunarks }}{\text { international }}$	PROJECT NO:	DRAWING NO:	SCALE: $1: 72$	
DATE:	06/06/2022		B-0000-12345	JEFA-GA	REV:	$\begin{aligned} & \text { SHEE: } \\ & 44 \text { of } \end{aligned}$
			7		8	

Company Confidential : All the information contained in this document is the property of Headworks Inc. the design concepts, and information contained herein are proprietary to teadworks int.1. they are not
transferable and must be used only for the purpose tor which this document is submitted, they may not be disclosed reproduced loan for use in any other manner without the express witten consent of Headworks intl

	1		2	13	
	ITEM No.	PART	MATERIAL	SIZE/DESCRIPTION	
	1	SIDE FRAME	304SS	3/16" PLATE (. 19 THK)	
	2	discharge Chute	304SS	3/16" PLATE (. 19 THK)	
	3	DEBRIS PLATE STIFFENERS	304SS	3/16" PLATE (. 19 THK)	N.S.
	4	DEBRIS PLATE	304SS	3/16" PLATE (. 19 THK)	
D	5	TOP COVER	304SS	$11 \mathrm{ga} \mathrm{(}$.12 THK)	
	6	SCREENFIELD SUPPORT	304ss	1/4" PLATE (25 THK)	N.S.
	7	SOLE PLATE	304ss	3/16" PLATE (. 19 THK)	
	8	RAKE BLADE	304SS	3/8" PLATE (38 THK)	
	9	CHANNEL SEAL	BUNA-N	1/2" THK	
	10	SCRAPER ASSEMBLY	304SS/UHMW		N.S.
	11	CHAIN ADJUSTER	18-85S	ACME THREADED ROD	
	12	CHAIN	304SS	125 mm PITCH	N.S.
	13	TAKE-UP BEARING	MFG. STD.	UCFX-13	
	14	GEARBOX / MOTOR	MFG. STD.	SA87/3HP	
	15	DRIVESHAFT	304SS	¢ ${ }^{\prime \prime}$	
	16	UPPER SPROCKET (DRIVE)	304SS	$125 \mathrm{~mm} / \varnothing^{7} \mathbf{7 m m}$	N.S.
	17	LOWER TURNAROUND	UHMW		N.S.
	18	DISCHARGE ENCLOSURE	304SS	$11 \mathrm{ga} \mathrm{(.12} \mathrm{THK)}$	
	19	TAPERED BAR	304SS	$8 \times 4 \times 40 \mathrm{~mm}, 1 / 4^{\prime \prime}$ SPACING	
C	20	FRONT COVERS	POLYCARBONATE	1/4" (.25 THK)	
	21	PIVOT STAND ASSEMBLY	304SS	VARIES	
	22	TRANSITION CHUTE	304SS	$14 \mathrm{ga} \mathrm{(.08} \mathrm{THK)}$	
	23	DISCHARGE COVER	POLYCARBONATE	$1 / 4^{\prime \prime}(.25$ THK)	
	24	LIFTING LUG	304SS	$3 / 8^{\prime \prime}$ PLATE (38 THK)	
	N.S. = NOT SHOWN (FOR CLARTY)				

NOTES:
ALL SURFACES TO BE BLASTED TO A UNIFORM FINISH, REMOVING ALL WELD STAINS AND DISCOLORATION. QUANTITY OF RAKES = 7
APPROXIMATE RAKE SPACING $=3.63 \mathrm{FT}$
ANCHOR BOLT LOCATIONS ARE +/-1" ACCURATE.
ALL ANCHOR BOLTS ARE PROVIDED BY OTHERS,
FASTENERS SHALL BE 18-8SS.
APPROXIMATE WEIGHT OF SCREEN $=2,175 \mathrm{LB}$

DRAWNBY:	R.W	$\frac{\text { Headurnks }}{\text { INTERNATIONAL }}$	PROJECT NO:	DRAWING NO:	SCALE	1:30
DATE:	06/06/2022		B-0000-12345	JEFA-GA	ReV:	SHEET:

		1 ।	2	3	
	ITEM NO.	PART	MATERIAL	SIZE/DESCRIPTION (SW220)	
	1	BODY	304SS	11 GA PLATE (.12 THK)	
	2	BEARING HOUSING	304SS	KA87 / 60 mm	
	3	SUPPORTS	304SS	1/2" PLATE (. 50 THK)	
	4	SPIRAL	CARBON STEEL	¢ $9^{\prime \prime}$ OD, 3/8" ${ }^{\text {IHK FLIGHTS }}$	N.S.
D	5	GEARBOX \& MOTOR	MFG. STD.	KA87, 3HP	
	6	INLET HOPPER	304SS	11 GA PLATE (.12 THK)	
	7	DISCHARGE TUBE	304SS	$11 \mathrm{GA} \mathrm{PLATE} \mathrm{(.12} \mathrm{THK)}$	
	8	DRAIN PAN	304SS	$11 \mathrm{GA} \mathrm{PLATE} \mathrm{(.12} \mathrm{THK)}$	
	9	DRAIN CONNECTION	304SS	3 SCH10	
	10	WASH WATER CONNECTION	304SS	1"NPT	
	11	FLUSH WATER CONNECTION	304Ss	3/4" NPT	
	12	DISCHARGE TUBE SUPPORT	304SS	3/16 PLATE (. 19 THK)	
N.S. = NOT SHOWN (FOR CLARITY)					

	1 -	2	13	
ITEM NO.	PART	MATERIAL	SIIE/DESCRIPTION	
1	SIDE frame	304SS	3/16" PLATE (. 19 THK)	
2	DISCHARGELCHUTE	304SS	3/16" PLATE (. 19 THK)	
3	DEBRIS PLATE STIFEENERS	304SS	3/16" PLATE (. 19 THK)	N.S.
4	DEBRIS PLATE	304SS	3/16" PLATE (. 19 THK)	
5	TOP COVER	304SS	$11 \mathrm{ga} \mathrm{(}$.12 THK)	
6	SCREENFIELD SUPPORT	304SS	1/4" PLATE (.25 THK)	N.S.
7	SOLE PLATE	304SS	3/16" PLATE (. 19 THK)	
8	RAKE BLADE	$3045 s$	3/8" PLATE (.38 THK)	
9	CHANNEL SEAL	BUNA-M	1/2" ${ }^{\text {THK }}$	
10	SCRAPER ASSEMBLY	304SS/UHMW		N.S.
11	CHAIN ADJUSTER	18-85s	ACME THREADED ROD	
12	CHAIN	304SS	125 mm PITCH	N.S.
13	TAKE-UP BEARING	MFG. STD.	UCFX-13	
14	GEARBOX / MOTOR	MFG. STD.	SA87 ${ }^{\text {\% }}$ HP	
15	DRIVESHAFT	304SS	¢ $3^{\prime \prime}$	
16	UPPER SPROCKET (DRIVE)	304SS	$125 \mathrm{~mm} / \varnothing 70 \mathrm{~mm}$	N.S.
17	LOWER TURNAROUND	UHMW		N.S.
18	DISCHARGE ENCLOSURE	304SS	$11 \mathrm{ga} \mathrm{(.12} \mathrm{THK)}$	
19	TAPERED bAR	304SS	$8 \times 4 \times 40 \mathrm{~mm}, 1 / 4^{\prime \prime}$ SPACING	
C 20	FRONT COVERS	POLYCARBONATE	1/4" (.25 THK)	
21	PIVOT STAND ASSEMBLY	304SS	VARIES	
22	TRANSITION CHUTE	304SS	$14 \mathrm{ga} \mathrm{(.08} \mathrm{THK)}$	
23	DISCHARGE COVER	POLYCARBONATE	$1 / 4^{\prime \prime}$ (.25 THK)	
24	LIFTING LUG	304SS	3/8" PLATE (.38 THK)	
N.S. = NOT SHOWN (FOR CLARITY)				

NOTES:
ALL SURFACES TO BE BLASTED TO A UNIFORM FINISH, REMOVING ALL WELD STAINS AND DISCOLORATION. QUANTITY OF RAKES = 7
APPROXIMATE RAKE SPACING $=3.63 \mathrm{FT}$
ANCHOR BOLT LOCATIONS ARE +/- 1 " ACCURATE
All ANCHOR BOLTS ARE PROVIDED BY OTHERS
6. FASTENERS SHALI BE 18-8SS.
APPROXIMATE WEIGHT OF SCREEN $=2,175 \mathrm{LB}$

Company Confidential: All the information contained in this document is the property of Headworks Inc, the design concepts and information contained herein are proprietary to Headworks intl. they are not
transferable and must be used only for the purpose for which this document is submifted, they may not be disclosed reproduced loan for use in any other manner without the express written consent of teadworks intl.

		1 -	2	13	
	ITEM NO.	PART	MATERIAL	SIZE/DESCRIPTION (SW220)	
	1	BODY	304SS	11 GA PLATE (.12 THK)	
	2	BEARING HOUSING	3045s	KA87/60mm	
	3	SUPPORTS	304SS	1/2" PLATE (.50 THK)	
	4	SPIRAL	CARBON STEEL	¢ 9 " OD, 3/8" THK FLIGHTS	N.S.
D	5	GEARBOX \& MOTOR	MFG. STD.	KA87, 3HP	
	6	INLET HOPPER	304SS	11 GAPLATE (.12 THK)	
	7	DISCHARGE TUBE	30458	11 GA PLATE (.12 THK)	
	8	DRAIN PAN	30455	$11 \mathrm{GA} \mathrm{PLATE} \mathrm{(.12} \mathrm{THK)}$	
	9	DRAIN CONNECTION	304SS	3 S SCH10	
	10	WASH WATER CONNECTION	304Ss	1"NPT	
	11	FLush WAter Connection	304SS	$3 / 4^{\prime \prime}$ NPT	
	12	DISCHARGE TUBE SUPPORT	304ss	3/16 PLALE (19 THK)	
	N.S. = NOT SHOWN (FOR CLARITY)				

NOTES:
. ALLSURFACES TO BE BLASTED TO A UNIFORM FINISH, REMOVING ALL WELD STAINS AND DISCOLORATION.
ANCHOR BOLT LOCATIONS ARE +/-1" ACCURATE.
ALL ANCHOR BOLTS ARE PROVIDED BY OTHERS.
FASTENERS SHALL BE 304SS.
5. APPROXIMATE WEIGHT OF THE SCREWPACTOR: $1,175 \mathrm{LB}$
6) LIFTING PAD EYE.

[^0]

Component Drawings

		1	12	1	
	Imem no.	NAME	DESCRIPION	MATERAL	QTY.
	1	PIN	F51 PIN	F51	1
	2	BUSHING	INNER UNK BUSHING	304SS	1
	3	CLPS	RETAINER CLPS	3045s	2
D	4	UNKS	INNER SIDE UNK BARS	304SS	2
	5	LINKS	OUTER UNK BARS	3045s	2
	6	ROUER	CHAIN ROUER, $\varnothing 55 \mathrm{~mm}$	30455	1

Headworks Inc.	$\left.\frac{-}{-\mid} \right\rvert\,$							-						
		AV	03-15-10	-	-			-				-		
		DRAWN BY:	DATE:	CHECKED BY:	DATE			PROVE	ED BY:		DATE	APPROVED ${ }^{\text {b }}$	BY; DATE:	
	Job no: STANDARD			Rake Bar Scraper MS2 BAR SCREEN						SCALE: NTS				
	PLANT: -											ORDER NO: -		
	LOCATION: -											REFRRENCE DIMG:		
	A Headworks Inc			1000 Brittmoore Park Dr Houston, Texas 77041			${ }^{\text {Mo. }}{ }_{03}{ }^{\text {Yr. }}{ }_{10}$				SCPR-N-304		$\begin{gathered} \text { Rev: } \\ 0 \end{gathered}$	$\begin{array}{\|l\|} \hline \text { Sht: } \\ 1 \text { of } 1 \end{array}$

Headurarks

Headloss Calculations

Headwarks

Headloss Calculations For

 Jefferson WPCP0\% blinding for 5 MGD; CW - 2.5 ft.; BS - 0.1875 in.

Approach Velocity (ft/s)	Shape Factor	Bar Spacing (inch)	Width of Bar (inch)	Screen Angle (deg) $)$	Channel Width (ft)	Headloss (ft)	Headloss (inch)	Healoss adder for frame (inch)	Total Headloss (inch)
1	1	0.1875	0.315	75	2.5	0.029955066	0.359460797		
1.5	1	0.1875	0.315	75	2.5	0.067398899	0.808786792	8	8.359460797
2	1	0.1875	0.315	75	2.5	0.119820266	1.437843186	8	8
2.5	1	0.1875	0.315	75	2.5	0.187219165	2.246629979	8	8.437843186
3	1	0.1875	0.315	75	2.5	0.269595597	3.235147169	10.24662998	
3.5	1	0.1875	0.315	75	2.5	0.366949563	4.403394758	8	11.23514717
4	1	0.1875	0.315	75	2.5	0.479281062	5.751372746	8	12.40339476

[^1]
Headwarks

Headloss Calculations For

Jefferson WPCP
30\% blinding for 5 MGD; CW - 2.5 ft.; BS - 0.1875 in.

Approach Velocity (ft/s)	Shape Factor	Bar Spacing (inch)	Width of Bar (inch)	Screen Angle (deg)	Channel Width (ft)	Headloss (ft)	Headloss (inch)	Healoss adder for frame (inch)	Total Headloss (inch)
1	1	0.1875	0.315	75	2.5	0.059999474	0.71999369		8
1.5	1	0.1875	0.315	75	2.5	0.134998817	1.619985803	8	8.71999369
2	1	0.1875	0.315	75	2.5	0.239997897	2.879974761	8	
2.5	1	0.1875	0.315	75	2.5	0.374996714	4.499960564		8
3	1	0.1875	0.315	75	2.5	0.539995268	6.479943212	8	8
3.5	1	0.1875	0.315	75	2.5	0.734993559	8.819922705	12.49996056	
4	1	0.1875	0.315	75	2.5	0.959991587	11.51989904	8	

[^2]Headloss vs Approach Velocity

Section 2

Description for Section 2 Project Specifications (Checkmarked) Notes, Clarifications and Exceptions Headworks Standard Specifications

This section includes the Jefferson WPCP specifications section 4621 19. Each item in the specifications will include a check mark (\checkmark) indicating compliance with the item, a notation taking exception to the specified item with a proposed alternate submitted for approval, or the notes "N/A" for non-applicable items or "NTC" for specifications that are for the contractor to note. Often, project specifications can become dated to where manufacturers have changed product features and/or designs. Or the specifications could have been developed using the product feature and/or design from more than a single manufacturer. A list of any notes and/or exceptions will immediately follow the project specifications.

SECTION 462119

CONTINUOUS BELT SCREENING SYSTEM

PART 1 GENERAL

1.1 SCOPE OF WORK

See Note \#3
A. Furnish all labor, materials, equipment, and incidentals required to install and test one (1) complete continuous belt fine screening system (System) with all appurtenances as specified herein.
\checkmark B. This equipment is being pre-selected. The Contractor shall be responsible for furnishing all labor, materials, equipment, and incidentals required to install, test and commission.
\checkmark C. System shall include the screen and washing compactor. The screen shall mechanically remove solids from raw wastewater. The compactor shall be compatible for use with the screens from raw wastewater.
\checkmark D. Provide shop drawings and operation and maintenance manuals in accordance with the General Requirements section of these Specifications.
\checkmark E. Provide start-up and performance acceptance testing services as specified herein.
\checkmark F. Fit the equipment into the space allocated and allow adequate clearance for entry, installation, replacement, servicing, and maintenance.
\checkmark G. Verify actual and final arrangement, locations, grade, elevations.
\checkmark H. If adjustments and modifications are necessary, submit to the Engineer details of such adjustments and reasons for approval. Make no adjustments without Engineer's approval.

1.2 SYSTEM DESCRIPTION AND DESIGN REQUIREMENTS

A. System Description

1. The screen will have a continuous stainless steel belt that automatically rotates within the internal guide system of the static frame.
$\checkmark 2$. The screen will be straight through type that will present a clean screening grid to the influent flow at all times.
2. Solids will collect as a mat on the front face of the continuous belt. The belt will intermittently rotate and elevate the solids to the discharge point. Larger objects will be picked up by a series of hooks.
\checkmark 4. The solids will be automatically removed at the top of the screen into an internal hopper and be fed to the screening handling system.
3. The continuous belt will be directly driven by drive sprockets that shall support and rotate the grid assembly.
$\checkmark 6$. The screen will be totally enclosed with lightweight access covers for easy removal to perform maintenance.
\checkmark 7. The washing compactor will sit under the discharge point of the screen.
\checkmark 8. The washing compactor will be adequately sized to handle all the screenings and wash water that will be generated by the screen at peak flow. The system will be required to wash the screenings to reduce the organic content and compact the remaining solids into a dry plug.
\checkmark 9. The washing compactor will generally comprise of a screw auger rotating within the washing and drainage trough, a wash water system, a compaction zone, and an outlet chute arrangement.
\checkmark 10. All stainless steel (including frame, grid, and drive components) mentioned below as stainless steel shall be T304 stainless steel. All hardware shall be T316 stainless steel.

See Note \#4 B. System Performance - The fine screening system will be designed to meet the following design parameters:
\checkmark 1. Number of screens 1
\checkmark 2. Peak flow per screen 5.0 MGD
\checkmark 3. Average flow to screen 2.0 MGD
4. Velocity through the grid $6.5 \mathrm{ft} / \mathrm{s}$
5. Screen grid opening 3 mm
\checkmark 6. Head loss at peak flow 30 inches @ 50% blinding and 30 inches upstream water level
\checkmark 7. Structural design differential of frame/grid
\checkmark 8. Drive design differential (operating)
\checkmark 9. Screen grid supporting drive sprockets
\checkmark 10. Channel width
\checkmark 11. Channel height
\checkmark 12. Number of Washing Compactors
13. Diameter of screw
\checkmark 14. Minimum diameter of shaft
15. System wash water requirements

48 inches minimum @ 100\% blinding
48 inches minimum
2 minimum - all stainless steel
30 inches
48 inches
1
6 inches
2.375 inches

39 GPM @ 60 PSI

1.3 RELATED WORK

\checkmark A. Testing \& Startup are included in Section 017900.
\checkmark B. Manufacturer services and training included in Section 017901.
\checkmark C. Miscellaneous metals are included in Section 051000.
\checkmark D. Field painting is included in Section 099100.
\checkmark E. Operation and maintenance manuals included in Section 017823.
\checkmark F. Delivery, Storage and Handling is included in Section 014534 .

1.4 SUBMITTALS

\checkmark A. Submit to the Engineer, in accordance with Section 0133 00, copies of all materials required to establish compliance with this Section. Submittals shall include the following:
\checkmark 1. Manufacturer's literature, illustrations, specifications, engineering data, connection details, and performance data. Electrical and instrumentation equipment. Schematic wiring diagrams and electrical control information.
\checkmark 2. Literature describing the equipment and showing all key details of construction and dimensions. Dimensions shall show overall size and space requirements including that for installation, leveling, dismantling and maintenance.
\checkmark 3. Cross sections and details, as to show that all components are in conformance with the intent of the specification and are satisfactory from the standpoint of design and physical arrangement.
a. Setting plans with tolerances for anchor bolts.
b. Supplied tools and spares.
c. Weights and lifting points of all equipment and subassemblies.
d. Identify any special handling requirements.
$\checkmark 4$. Weight of the equipment and its distribution on the supports.
$\checkmark \quad$ B. Operation and maintenance manuals as specified in Section 017823.
\checkmark C. Test Reports to be Submitted:
a. Refer to Section 017900 for details.
b. Copies of all test results, as specified in Part 3 of this Section.
\checkmark D. Submit the Equipment Warranty and Certification Form as specified in Section 013300.
\checkmark E. Submit manufacturers certificate of installation per Section 013300.

1.5 WARRANTY

\checkmark A. The manufacturer shall warrant in writing all equipment against defects in materials and workmanship for a period of 12 months from the date of acceptance. Within this 12-month period, any defective or malfunctioning equipment, component, or accessory shall be repaired or replaced upon notice at no additional cost to the Owner.

1.6 QUALITY ASSURANCE

\checkmark A. The equipment shall be designed and constructed in accordance with the best practices and methods of the industry and shall be installed in accordance with the manufacturer's recommendations and the Drawings. Use only new materials.
\checkmark B. The Contractor is responsible for proper coordination and integration of all equipment required for installation and all other associated work shown on the drawings and specified in the Contract Documents.
\checkmark C. Should equipment which differs from this Section be offered and determined to be the equal of that specified, such equipment will be acceptable only on the basis that any structures, piping, appurtenant equipment, electrical work, etc., required to accommodate such a substitution shall be made at no additional cost to the Owner and shall be as approved by the Engineer.

1.7 DELIVERY, HANDLING, AND STORAGE

\checkmark A. Equipment and materials provided under this Section shall be delivered, stored, and handled in compliance with Section 014534.

1.8 ACCEPTABLE MANUFACTURERS

A. Hydro-Dyne
\checkmark B. Headworks
C. Or approved equal

PART 2 PRODUCTS See Note \#5

2.1 CONTINUOUS SCREENING BELT

A. The screenings belt will consist of heavy duty stainless steel laced links connected in parallel and separated by Delrin spacers to maintain specified opening. Each laced link hook element shall be fabricated from 16 gauge (minimum) stainless steel. Each straight element shall be fabricated from 18 gauge (minimum) stainless steel. All elements shall be a minimum of 1inch wide forming a slotted opening of the specified width and minimum 1- inch deep in the direction of flow. Hooks on elements shall form horizontal lifting trays or shelves for removing large solids and rags every 8 inches.
B. Links, hooks, and screening lifting members must be manufactured out of stainless steel.
C. The stainless steel laced links will be connected by heavy duty stainless steel axles to form a continuous belt that will rotate within the frame's guide system. Axle diameter shall be a minimum $5 / 8$ inch. The axle design will allow the row of laced links to pivot. The links shall support the screening grid and bear tension loads across the entire width and length of the screen belt.
D. The axles will be extended to fix a UHMWPE guide link to the side of each row of laced link elements. These guides will interlock to create a continuous guide link system that will slide within the frame.
E. Guide links shall be precision machined from solid virgin UHMWPE.
F. The heavy duty guide links will be minimum 2- inches thick to protect against undue wear from grit and will be specially machined to form a closure seal between the rotating belt and the static frame.
G. The seal shall be continuous from grade level through the water flow forming an uninterrupted closure between the traveling screen grid and the stationary frame. The seal shall be fixed to the screen frame and be adjustable so that it will remain in contact with the rotating screen belt at all times.
H. Guide systems that use rollers.
I. Grid sealing systems that use neoprene seals.
J. The bottom of the grid shall be sealed with a replaceable front lower seal brush with a stainless steel holder and polypropylene bristles.
K. Intermittent stainless steel laced link elements that form sharp hooks will be regularly placed along the face of each row of the grid to effectively remove larger solid material.

2.2 FRAME See Note \#5

A. The continuous belt will rotate within a heavy duty stainless steel static support frame. Frame angle in the channel shall be at a 75 degree angle.
\checkmark B. The screen will not be fixed within the channel to allow the entire machine, including screen grid, to pivot/lift out of the channel for repair or bypass. All routine maintenance will be achieved without removing the screen from the channel and shall be performed at grade level.
C. The guide link system will travel around a guide wear track that is integral to the support frame.
D. The design will ensure that the support frame meshes with the closure seal on each guide link to prevent passage of screening material and grit particles.
E. All components of the lower wear tracks shall be bolt in, field replaceable and manufactured from stainless steel.
\checkmark F. The frame shall accommodate stainless steel protective covers designed to prevent leakage and contain spray wash. All access covers for maintenance will be lightweight and easily removable. Screens with covers requiring neoprene, rubber or plastic seals are not acceptable.
\checkmark G. If required, the screen manufacturer will supply the stainless steel angled filler plates with neoprene seals to connect from the upstream corners of the support frame to the channel walls.

2.3 SCREEN DISCHARGE

See Note \#6
A. A stainless steel spray wash header will be located in the head space of the screen to offload the screenings from the continuous belt.
B. The spray bar will incorporate brass nozzles at 2 inch spaces that can easily be replaced or removed for cleaning.
C. The spray bar will be positioned behind the rotating belt and will backwash the solids into a discharge hopper manufactured from stainless steel. The wash water will be used to continuously flush the screenings from this hopper directly into the Washing Compactor.
D. The addition of a mechanically rotating brush system to aid offloading will not be acceptable.

2.4 SCREEN DRIVE

See Note \#3
A. Each screen will have a maximum 1 hp , inverter duty electric motor suitable for a 460/3/60 supply and rated for a Class 1 Div. 2 environment. As a minimum, the motor will be TEFC with an IP55 enclosure rating and will conform to NEMA MG-1 requirements. The motor will be located outside of the screen covers and above the top of the channel.
\checkmark B. The gear reducer shall be directly coupled to a heavy duty shaft machined from stainless steel.
C. The continuous belt will be supported and rotated around heavy duty stainless steel sprockets located on the drive shaft in the head space of the screen.
D. Drive sprockets will have removable bolted-on lugs that transmit torque directly from the gear reducer to notches on the underside of the UHMWPE guide links. Driving forces shall be transmitted to areas located behind the screen's grid to prevent solids from contacting drive surfaces.

2.5 WASHING COMPACTOR

A. The main body will be the washing trough that will receive screenings and wash water directly from the discharge point of the screen.
\checkmark B. The washing trough will house the screw auger and provide a dedicated section to reduce organic content.
C. The stainless steel drainage section will be slots with $3-\mathrm{mm}$ openings and be adjustable to maintain auger alignment. This drainage section shall be removable and easily replaceable in the field with no special tools. The flights of the screw may be fitted with a stiff nylon brush that will maintain contact with the drainage section, preventing blockages. The replaceable brushes will be supplied in pre-coiled lengths with stainless steel removable clamps.
\checkmark D. The underside of the washing trough will be a catch pan chute that will divert the water that passes through the drainage section, back to the influent flow with dual outlet plain end pipe connections. The unconnected pipe side will be capped with a rubber compression cap so that it can be removed, and the drain piping can be cleaned if necessary. The catch pan will include a flushing connection point for washing and cleaning.
\checkmark E. The catch pan will include a separate wash water supply to purge the area of accumulated solids. A single spray nozzle will direct water across the length of the pan toward the outlet. The frequency of cleansing cycles will be controlled through the main control panel.
F. The AR400 hardened steel screw auger will sit in the washing trough. Washing compactors with shaftless screws are not acceptable as a shaft is required to support the flight and provide necessary torque and compaction. Screw auger will be primer coated to inhibit corrosion.
G. The auger will be a varied pitch screw aligned at the compaction end by AR400 hardened steel wear and anti-rotation bars designed to prevent the compacted screening from spinning within the compaction zone.
$\checkmark \mathrm{H}$. The screw will rotate allowing wash water and free organic/fecal material finer than trough openings to escape and return to the plant flow. The wash water will flush the separated organic material through the drainage section in solution or as small particles.
I. Washing of screenings shall be achieved through an enhanced washing module consisting of the following minimum requirements manufactured out of stainless steel:

1. Variable pitch flight for separate screening transport through the wash, dewatering and compaction zones.
2. Washing Module Zone
a. Flanged connections and a stainless steel orifice plate or nozzle
$\checkmark \quad$ b. Hardened steel wear and anti-rotation bars
\checkmark c. Separately controlled high pressure washing to sheer and break-up organic and fecal material for return to the channel.
\checkmark d. Cleansing cycles moving the auger in forward and reverse direction are controlled through the main control panel and operator adjustable up to 9 cycles
3. Dewatering and Compaction Zone
a. Stainless steel header feeding an external rinse shower
b. Hardened steel wear and anti-rotation bars
c. Full circumference perforations for dewatering and extrusion of organics and fecal material.
\checkmark d. Attached drainage catch pan with a separate wash water supply to purge the area of accumulated solids
\checkmark e. Removable covers for inspection access
\checkmark J. The compacted screenings will be pushed through the compaction zone and pass through an elbow into an outlet chute. The outlet chute will provide for screening expansion and will elevate the dewatered screenings to discharge by gravity into a waste receptacle (by others).
\checkmark K. Each Washing Compactor will have a minimum 3 hp , inverter duty electric motor suitable for a 460/3/60 supply and rated for a Class 1 Div. 2 environment. As a minimum, the motor will be TEFC with an IP55 enclosure rating and will conform to NEMA MG-1 requirements.

2.6 SPARE PARTS

\checkmark A. At a minimum, the following spare parts shall be supplied with the equipment.
\checkmark a) One set of fuses, one for each fuse rating
\checkmark b) One set of lamp lenses
\checkmark c) One strainer
NTC d) Spare parts shall be stored, by the Contractor, onsite and shall be handed over to the Owner at equipment handover.

2.7 ACCESSORIES

\checkmark A. The manufacturer will supply the following accessories, with the equipment:
\checkmark a) One (1) 1.5 " NEMA 4X brass body solenoid valve
\checkmark b) One (1) $3 / 4$ " NEMA 4X brass body solenoid valve
\checkmark c) One (1) 2" wash water strainer
d) One (1) wash water pressure gauge

2.8 CONTROLS

\checkmark A. The equipment manufacturer will supply one (1) UL listed main control panel and one local control station that shall automatically control the equipment.
\checkmark B. The Main Control Panel shall consist of a NEMA 4X stainless steel enclosure for outdoor installation. The panel shall be furnished completely pre-wired and tested.
\checkmark C. Each control panel shall consist of the following components for each screening system:
See Note \#8 a. Main lockout/fused disconnect switch
b. Variable frequency screen drive
c. Compactor motor starter
d. Control transformer, 500 VA minimum
e. Programmable control relay with minimum of 5 cycle timers
f. Fused disconnect
g. Hour run meter
h. Fuses and breakers
i. Motor overload sensor
j. Panel power light
k. Screen run/fault lights
l. Washing compactor run/fault lights
m . Manual operator and reversing contactors for wash module operation
n. Reset pushbutton
o. Emergency stop pushbutton
p. Current monitors
D. Ancillary Control Components
\checkmark a. Float switch
See Note \#9 b. Ultrasonic differential level system consisting of the following per screen:

1. NEMA 4 X enclosure with viewing window
2. Milltronics Hydro-Ranger 200 controller with real-time 4-20mA output
3. Two (2) NEMA 4X/7 transducers
\checkmark c. Local Control Station - NEMA 7 - Each local station shall consist of the following components:
4. NEMA 7 enclosure
5. Hand/Off/Auto switch for each motor
6. Emergency stop

2.9 COATINGS

A. To provide a uniform finish to the stainless steel surfaces provided with the System, pickling process is required per the manufacturer standard protocol.
B. All ferrous surfaces (except stainless steel) shall be coated with a pre-primer, primer, and an exterior top coating, or fusion bonded polyester coating suitable for humid/wet environments for superior corrosion protection.
C. Motor(s) and gearbox(s) shall be surface prepared to withstand humid/wet environments for superior corrosion protection.
2.10

FACTORY TESTING

\checkmark A. The screening system and all components shall be factory assembled and tested prior to shipment. The equipment shall be shipped fully assembled and shall be capable of being set in place and field erected by the Contractor with minimal field assembly.
\checkmark B. During the factory test period the screening system shall be adjusted as required assuring proper operation on completion of the field installation. The Manufacturer shall supply a certification of the completion of the factory testing of the assembled screening system and appurtenances and shall certify as to the equipment being in satisfactory operating condition at time of shipment.

PART 3 EXECUTION

3.1 INSTALLATION

A. Contractor shall install the equipment as indicated on the contract drawings and in strict accordance with the manufacturer's recommendations.
B. The final installation must be certified by the manufacturer as complete and correct.
C. The manufacturer shall provide the Contractor with required clearances, tolerances and limitations, such as smoothness/flatness of concrete pad and shall be available to answer questions prior to and during the installation of the equipment.
D. Any special tools or materials required for this start-up / acclimation period shall be provided by the manufacturer.

3.2 START-UP TESTING

\checkmark A. Refer to Section 017900 for Facility Testing and Start-up.

3.3 MANUFACTURER'S FIELD SERVICES

\checkmark A. Provide field services identified in Section 0179 01. Include 2 days on site (1 day for training and 1 day for start-up), exclusive of travel time.

END OF SECTION

Jefferson WPCP Specification Section 462119 Notes and/or Exceptions

1. General: Anchor bolts are not included in Headworks® Inc. Scope of Supply. Headworks® Inc. does not have any knowledge of the Concrete Design, existing or future. Headworks® Inc. has included in this Submittal the Anchor bolt locations and loads in the submittal for the design and supply of Anchor Bolts by others (please refer to the General Arrangement Drawings of Section 1). No Seismic Calculations are included, if required.
2. General: All Stainless-Steel material purchased will be provided to Headworks Inc. pickled and passivated the mill. Our offer is based on Headworks Inc. standard material finish where all stainless-steel surfaces shall be glass Bead Blasted prior to equipment assembly. The Bead Blast shall remove all weld discoloration and surface contaminants and provide for Spontaneous Passivation as recognized in ASTM A380, Cleaning, Descaling, and Passivation of StainlessSteel Parts, Equipment, and Systems, 1. Scope, 1.1.1.1.

All purchased components such as motors, reducers, valves, switches, etc. that are not Stainless Steel shall be supplied with the manufacturers' standard coating / finish.
3. Specification Section 1.1 Scope of Work and Specification Section 2.1 specifies to furnish (1) complete continuous belt fine screening system. Specification Section 2.1 includes details regarding a Continuous Screening Belt. Please note Headworks has included in this Submittal a Mechanically Cleaned Bar Screen Type MS2. Headworks standard design for the MS2 Bar Screen utilizes rakes that approach the channel invert from upstream side of the screen and rake upward at the upstream face with tines between the bars. This screen will utilize a 3HP Class 1, Div 2 motor. Headworks has included in Section 2 of this submittal the Standard Specifications for the MS2 Bar Screen.
4. Specification Section 1.2 System Description and Design Requirements specifies will be directly driven by drive sprockets that shall support and rotate the grid assembly. Screen grid opening shall be 3mm. Diameter of screw shall be 6 inches. System wash water shall require 39GPM @ 60PSI. Please note Headworks standard design for the MS2 Bar Screen utilizes lower turnarounds in lieu of the lower sprockets. Headworks has also included in this Submittal a design for the MS2 Bar Screen that utilizes a bar spacing of 0.1875in, and a Screwpactor SW220 that utilizes a screw with a 9in diameter. Additionally, the wash water shall require 35GPM @ 40PSI A more detailed description of the

Screwpactor SW220 can be found Headworks Standard Specifications in Section 2 of the Submittal.
5. Specification Section 2 Products includes specifications for the design and supply of a Continuous Screening Belt. Please note Headworks has included in this Submittal a Mechanically cleaned Chain and Rake MS2 Bar Screen. Headworks has included in Section 2 of this submittal the Standard Specifications for this model.
6. Specification Section 2, 2.3 Screen Discharge includes specifications for a spray wash header to be located in the head space of the screen. Please note Headworks' standard design of the MS2 Bar Screen does not utilize a spray wash header and instead used a scraper arm to remove screenings from rakes.
7. Specification Section 2, 2.5 Washer Compactor includes specifications for the material of the of the augur and wear bars. Please note Headworks standard design for the SW220 auger is made of Carbon Steel 8620 except for the final flight which is made of AR400 material and the anti-rotation bars constructed of $3 / 16$ " thick AR200 plate steel.
8. Specification Section 2.8. C. a specifies each control panel shall consist of a main lockout/ fused disconnect switch. Please note Headworks has provided in this Submittal a main breaker in lieu of the fused disconnect switch.
9. Specification Section 2.8. D. b includes specifications for the Ultrasonic differential level system. Please note the Hydro Ranger is mounted in the main control panel, through the door so that it is viewable, rather than in a separate enclosure.

Suggested Specification for a Headworks ${ }^{\circledR}$ Bar Screen Type MS2
 Revised November 2017

NOTICE: The following specification is written for Grade 304 stainless steel. Changes are required for Grade 316 stainless steel.

MECHANICALLY CLEANED HEADWORKS® BAR SCREEN TYPE MS2

PART 1-GENERAL

1.01 DESCRIPTION

Furnish, install, and test mechanically cleaned screening equipment.

1.02 SYSTEM

a. Screen shall remove solids from raw wastewater.
b. Screenings shall be mechanically raised on screen to the debris plate and automatically discharged as indicated on the plans or specified herein.
1.03 QUALITY ASSURANCE
a. All materials shall be new, of high grade, and with properties best suited to the working environment.
b. Manufacturer shall be successful in the experience of manufacture, operation, and servicing of equipment of type, size, quality, performance, and reliability equal to that specified.

1.04 SUBMITTAL

a. The manufacturer shall submit a general arrangement drawing that illustrates the layout of the equipment and principle dimensions, and other related data including descriptive literature, electrical control drawings, and catalog cut sheets for individual components and drive motor data.
b. The manufacturer shall submit the location of the nearest permanent service headquarters of the screen and motor manufacturer for the screen and motor submitted.
c. The manufacturer shall submit operating instructions with descriptive literature indicating materials of construction, weights, principle dimensions, and other important details.

1.05 DELIVERY, STORAGE, \& HANDLING

a. Shipping
i. Ship equipment, material, and spare parts complete except where partial disassembly is required by transportation regulations, for protection of components, or for installation requirements.
ii. Pack spare parts in containers bearing labels which clearly designate contents and pieces of equipment for which they are intended.
b. Receiving

Store and safeguard equipment, material, and spare parts.

Suggested Specification for a Headworks ${ }^{\circledR}$ Bar Screen Type MS2 Revised November 2017

PART 2 - PRODUCTS

2.01 MANUFACTURERS

a. Screen shall be the Headworks ${ }^{\circledR}$ Bar Screen Type MS2 as manufactured by Headworks Inc. or pre-qualified equal. All pre-qualification proposals must be submitted to the owner's representative a minimum of fourteen (14) days prior to bid opening. Any prequalification proposal failing to meet that deadline will not be considered. Prequalification package shall include, but not be limited to, the following:
i. Complete set of dimensional drawings with descriptive information
ii. Process equipment electrical requirements with schematic diagrams
iii. Control panel layout diagram with details on related components
iv. Detailed list of deviations from contract documents and specifications

2.02 PROVISIONS

a. Screen shall be mechanically cleaned. Incline of bar screen shall be \qquad degrees from vertical. (The range is from zero $\left(0^{\circ}\right)$ to fifteen $\left(15^{\circ}\right)$ degrees)
b. Rakes shall approach channel invert from upstream side of screen and rake upward at upstream face with tines between the bars.
c. The screen shall be designed to pivot out of the channel OR be pulled out of the channel. Rubber side seals shall seal the screen to the channel walls.
d. Screenings shall be discharged on the downstream side of the screen to \qquad .
e. Framework of screen shall be constructed of Grade 304 stainless steel with cross section of minimum thickness $3 / 16^{\prime \prime}$. Various parts fastened by welding, riveting, or bolting shall be braced as necessary to ensure a rigid structure. The side frames shall be minimum $3 / 16^{\prime \prime}$ formed to a channel profile. The bottom thickness shall be a minimum of $3 / 16^{\prime \prime}$. The frame shall have support beams with U-profile thickness of $3 / 16^{\prime \prime}$ on the front above the maximum water line.
f. The screen frame shall be supplied in one piece, requiring no field assembly.

Optional. For indoor installations with height restrictions, the screen shall be supplied in flanged subassemblies complete with installed drive chains and rake bar. The flanged subassemblies shall be bolted together onsite during installation.
g. The drive mechanism for the rakes shall incorporate a solid shaft constructed of Grade 304 stainless steel.
h. Bolts and nuts shall be of Grade 304 stainless steel or other acceptable corrosion-resistant material. Anchor bolts shall be $3 / 4$ " or $5 / 8^{\prime \prime}$ Grade 304 stainless steel and furnished by the installing contractor.
i. Screen bars shall be constructed of Grade 304 stainless steel.
j. The bar rack shall consist of continuous bars. The dimensions of the bars are .31" $x .15^{\prime \prime} x$ 1.57 " $(8 \mathrm{~mm} \times 4 \mathrm{~mm} \times 40 \mathrm{~mm})$ OR . $47^{\prime \prime} \times .23^{\prime \prime} \times 1.97^{\prime \prime}(12 \mathrm{~mm} \times 6 \mathrm{~mm} \times 50 \mathrm{~mm})$ for bar spacing $>3 / 8^{\prime \prime}$ (10 mm).
k. Round or rectangular bars shall not be used.
l. Bars shall be supported from framework and be readily removable. The screen bars shall be individually replaceable without any welding or cutting. Bars that are welded to the framework or welded into sub-assemblies shall not be allowed. Replacement screen bars shall be available from the screen manufacturer.

Suggested Specification for a Headworks ${ }^{\circledR}$ Bar Screen Type MS2 Revised November 2017

m . Bars shall be fastened to a debris plate that extends to the point of discharge. Bars shall extend a minimum of 8 " $(200 \mathrm{~mm})$ above the maximum water level.
n . The screenfield shall be accurately constructed to give a clear opening of \qquad inches
\qquad mm) between the bars. There shall be no space wider than the opening between the bars which would permit passage of larger solids through the screen.
o. Debris plate of Grade 304 stainless steel plate (thickness is minimum $3 / 16^{\prime \prime}$) shall extend to the point of discharge. Debris plate shall be true and flat such that a close clearance between the raking tines and the plate can be maintained during the cleaning cycle. The debris plate shall be constructed to guarantee a maximum gap between rake bar and debris plate, leading to the discharge chute without interruption.
p. The screen rakes shall be designed such that screenings will not wrap around the tines or the stationary bars, and will not fall back into the sewage flow during the cleaning cycle.
q. Screenings transported to the top of the screen shall be discharged positively by means of a scraper mechanism to the discharge chute. A scraper blade made of a combination of synthetic and other material shall be provided on the scraper.
r. The raking tines shall have the tooth profile precision cut from a single continuous bar of sufficient thickness and depth to ensure adequate stiffness and strength to cope with the specified duty cycle. The rakes shall run in guides on both sides to ensure engagement and clean the bars from the upstream side of the screen. The rakes shall be fabricated from Grade 304 stainless steel. The rake material, thickness of material, and capacity of rake is similar to the entire construction. The rake material thickness shall be as follows:

Thickness of rake bar	$10 \mathrm{~mm}\left(.375^{\prime \prime} \mathrm{min}.\right)$
Reinforcement profile	$4 \mathrm{~mm}\left(.1575^{\prime \prime} \mathrm{min}.\right)$
Side plates	$10 \mathrm{~mm}\left(.375^{\prime \prime} \mathrm{min}.\right)$

s. The rake capacity shall be as follows:

Capacity/Rake Bar: 0.074 f3/ft Screen Field Width (SFW)
Total Screen Capacity at approx. 10 second cleaning interval ($\mathrm{ft}^{3} / \mathrm{h}$)
$\ldots=0.074 \mathrm{f}^{3} \times \mathrm{SFW}(\mathrm{ft}) \times 360$
Total Screen Capacity at approx. 5-second cleaning interval ($\mathrm{ft}^{3} / \mathrm{h}$)
\qquad $=0.074 f^{3} \times$ SFW (ft) $\times 720$
t . Rakes shall have a shovel shape to prevent screenings from falling back to the channel. Flat rakes without this feature are not permitted.
u. Rake tines shall penetrate into the screen bar spacing to ensure that screenings are completely cleared during each lifting operation. Rake tines are mechanically engaged into the screen bars. During each cleaning stroke, the raking tines shall engage into the bottom of the bar screen grids at the channel invert.
v. Drive chains, chain guides, chain sprockets, bearings, and shafts shall be fully replaceable without having to remove the screen from the channel.
w. The upper sprocket shall be made of Grade 304 stainless steel. The upper sprocket shall have a 125 mm pitch and a tooth width of minimum 27 mm . No split sprockets shall be used.
x. Upper bearings shall be UCF Type or equal; housed bearings are grease-lubricated and mounted to the take-up frame assembly. No bearings shall be submerged in the waste stream

Suggested Specification for a Headworks ${ }^{\circledR}$ Bar Screen Type MS2 Revised November 2017

y. The lower turn guide shall measure:

Pitch	$4.92^{\prime \prime}$
Disk Width	$0.875^{\prime \prime}$
Outer Diameter	$10.695^{\prime \prime}$
Inner Diameter	$9.195^{\prime \prime}$

z. Chains shall be heavy duty roller type with a minimum weight of $6 \mathrm{lbs} / \mathrm{ft}$ and made of Grade 304 stainless steel of high tensile strength and resistance to corrosion. Chain rollers must be stainless steel. The average ultimate strength of the chain shall be minimum 31,000 pound-force. Chain pins shall be a stainless steel and hardened.
aa. Chain guides shall be securely fixed to the screen frame for the full height of travel and shall not protrude into the flow. The type of chain guide, thickness of material, and size is an L-profile, 2.5 " $/ 1.3125 " / 0.1875$ " (upper) and 2.687 " $/ 1.5^{\prime \prime} / 0.1875^{\prime \prime}$ (lower), material Grade 304 stainless steel. Replaceable wear strips on chain guides located below the water level shall not be allowed.
bb. The drive motor shall be maximum 3 HP . The motor shall be an inverter duty rated motor with a 1.0 service factor, rated for continuous duty. The motor shall be controlled by a VFD (variable frequency drive), rated for continuous operation. Enclosure shall be rated applicable for the specific installation environment. The drive unit, including the reduction gearbox, shall be directly shaft mounted and shall be positioned to facilitate maintenance work.
cc. A VFD and a PLC (programmable logic controller) shall be provided. VFD shall have solid state overload integral. On meeting a blockage, the device shall be able to automatically reverse the direction of travel of the raking mechanism for an adjustable distance and revert to the forward motion to try to clear the blockage. This reversing action can occur a maximum of three times for any one obstruction. The device shall reset automatically if the blockage causing the initial overload condition is cleared; should the blockage remain upon the completion of the fourth attempt, the screen shall be tripped and an alarm generated. The reverse function shall be effective only in the low speed mode.
dd. The raking mechanism shall be capable of two cleaning speeds. Normal speed shall have an approximate ten second cleaning interval and high speed shall have an approximate five second cleaning interval. Screens which do not meet these performance criteria will not be considered.
ee. A discharge chute (thickness is minimum $3 / 16^{\prime \prime}$) shall be provided for each screen to divert screenings discharged from the screen to a \qquad . The discharge chute shall be made of Grade 304 stainless steel. The discharge chute shall be mounted at an angle of 30 degrees. Panels are positioned on both sides to protect from splashing.
ff. Covers, which are easily removable, shall be provided for easy maintenance. Covers shall be constructed of clear, impact-resistant polycarbonate material (thickness is minimum 1/4") to allow for visual observation during screen operation. Polycarbonate covers shall have reinforced plastic pull handles. Polycarbonate covers shall be held in place with threaded plastic hand knobs. Stainless steel covers shall not be used.
gg. Optional. Top enclosed: The discharge chute and top of screen shall be fully enclosed. The top of the frame shall be covered with a minimum 11 gauge Grade 304 stainless steel cover, bolted to the front and back of the screen frame. The sides of the top cover shall

Suggested Specification for a Headworks ${ }^{\circledR}$ Bar Screen Type MS2
 Revised November 2017

be bent to overlap the side frames. The cover shall be made of $1 / 4$ " clear, impact resistant, polycarbonate to allow for visual inspection during screen operation. The polycarbonate cover shall be held in place with threaded plastic hand knobs.
hh. Optional. Heat tracing: The debris plate shall be heat traced, insulated, and jacketed above the maximum water level or the base of the debris plate, whichever is higher, up to the top of the debris plate where screenings are discharged and down to the base of the discharge chute. Heat tracing shall be suitable for Class \qquad Division \qquad areas. Insulation shall be approximately 1" thick. Jacketing shall be of Grade 304 stainless steel material. The surface where heat tracing is installed shall be energized by a thermostat that turns on the heat tracing when the outside air temperature reaches 40 degrees Fahrenheit. Heat tape shall extend outside the pan for field termination in an enclosure provided by manufacturer that houses contactors, thermostat, terminal strips, etc., and is, in turn, wired to the main control panel for the bar screen.
ii. Optional. Pivot device: The screen shall be equipped with a pivot stand that allows the screen to pivot for maintenance purposes. The lifting is achieved by means of cables mounted on the lifting eyes on the lower end of the screen. The lifting device is not included in the scope of supply.

Suggested Specification for a Headworks ${ }^{\circledR}$ Bar Screen Type MS2
 Revised November 2017

2.03 SEQUENCE OF OPERATION - Dual Speed Operation

Main Panel On/Off	Local Panel Hand/Off/Auto Fwd/Off/Rev	Result	Action when Blockage occurs	Comments
On	 Any Position	Screen starts in LSP when the rising water differential reaches set level (Level 1).	Screen performs cleaning shuttle up to 4 times. If unsuccessful, screen stops and initiates alarm contact.	LSP - Low Speed Mode (approx. 10-second cleaning interval)
On	 Any Position	Screen starts in HSP when the rising water differential reaches set level (Level 2.)	Screen performs cleaning shuttle up to 4 times. If unsuccessful, screen stops and initiates alarm contact.	HSP - High Speed Mode (approx. 5 second cleaning interval)
On	 Any Position	Exercise Cycle	Screen performs cleaning shuttle up to 4 times. If no success, screen stops and initiates alarm signal.	X min in LSP, every Y min. (X \& Y are Operator adjustable)
On	Manual Forward	Screen operates forward in LSP.	Screen stops immediately. No cleaning shuttle.	
On	 Reverse	Screen operates in reverse in LSP.	Screen stops immediately. No cleaning shuttle.	
On	E-Stop Engaged	Screen stops immediately.	N/A	
On	Off Any Position	Screen will not operate.	N/A	
On	$\begin{gathered} \text { Hand } \\ \& \\ \text { Off } \end{gathered}$	Screen will not operate.	N/A	
Off	Any Position \& Any Position	Screen will not operate.	N/A	

Suggested Specification for a Headworks ${ }^{\circledR}$ Bar Screen Type MS2
 Revised November 2017

BAR SCREEN CONTROLS
a. A bar screen main control panel shall be furnished, completely pre-wired and tested, requiring only wall mounting and connection to interconnecting wiring in the field by an electrical contractor. The control panel shall include all equipment required to control one or more bar screen(s) as specified herein. The control panel shall bear a serialized UL 508, UL 698A, or CSA label when applicable and shall be manufactured by a CSIA certified panel shop. The panel shall be located in a non-classified area where no corrosive gases are present.
b. The control panel enclosure shall be sized as required to house equipment and shall be suitable for wall mounting or mounting to strut-type supports. The enclosure shall be rated NEMA 4X Grade 304 stainless steel.
c. Each bar screen motor shall be controlled by a ABB ACS 500 Series VFD with an internal swinging choke, sized as required for bar screen motor horsepower and suitable for use with variable torque loads. VFD shall include discrete and analog input and outputs as required by control panel manufacturer. No bypass starters will be required.
d. The VFD(s) shall be controlled by an Allen Bradley MicroLogix 1400 Series PLC with necessary extended I/O. The PLC shall be used to control the VFD to operate the screen at two (2) speeds and through the automatic reversing/cleaning shuttle sequence. The PLC shall include discrete and analog inputs and outputs as required.
e. Each screen shall be controlled in synchronization with ultrasonic level sensors. Upon reaching a predetermined differential set point the screen shall begin operation in low speed and shall shut down after a predetermined time if the differential level is less than the predetermined set point. Upon reaching a second, higher predetermined differential set point, the screen shall operate in high speed.
f. When an overcurrent is detected, the screen shall automatically stop and run in reverse for a predetermined time. The screen shall then stop and return to forward. If the cause of the overload is cleared, the screen shall automatically reset to normal operation. If an overload is again detected, the reversing cycle is repeated up to four (4) times prior to initiating an alarm contact. The use of clutches, friction disks, or similar devices for overload protection are not acceptable
g. The control panel shall have an OIT (Operator Interface Terminal) to allow adjustment of counter values, timers, and level set points without connecting to the PLC. The OIT shall be rated NEMA 4 X and provide fault and troubleshooting information.
h. Door mounted NEMA $4 X$ indicating lights shall be provided to indicate running and alarm status of the bar screen. Legend plates and a door mounted alarm reset push button shall also be provided.
i. Local control station(s) shall be provided at the bar screen(s) and shall be fitted a push button emergency stop switch, a Hand-Off-Auto switch, and a Forward-Off-Reverse switch. The local control station enclosure(s) shall be rated NEMA 7.

SPARE PARTS
a. The following minimum recommended spare parts shall be provided for mechanically cleaned screens:
i. One (1) set of wiper arm wear pads

Suggested Specification for a Headworks ${ }^{\circledR}$ Bar Screen Type MS2
 Revised November 2017

ii. One (1) five-foot chain segment
iii. Two (2) rake bars

2.06 DESIGN DATA

a. Quantity of Bar Screens ___ each
b. Channel Depth feet
c. Channel Width ___ feet
d. Discharge Height above Floor Level feet
e. Maximum Water Depth feet
f. Bar Spacing ___ inch
g. Screen Field Width feet
h. Maximum Design Flow per Bar Screen ___ MGD
i. Screen Incline from Vertical degrees
j. Screen shall be pivot type
yes/no
k. Screen shall be enclosed on top
yes/no

2.07 SURFACE FINISHES AND COATINGS

a. After all fabrication and welding has been completed, all stainless steel surfaces shall be glass bead blasted prior to equipment assembly. The bead blast shall remove all weld discoloration and surface contaminants and provide for spontaneous passivation as recognized in ASTM A380-99, Cleaning, Descaling, and Passivation of Stainless Steel Parts, Equipment, and Systems, 1. Scope, 1.1.1.1.
b. All purchased components such as motors, reducers, valves, switches, etc. shall be supplied with the manufacturer's standard finish.

PART 3 - EXCECUTION

3.01 INSTALLATION

Equipment shall be installed in strict conformance with manufacturer's recommendations.

3.02

MANUFACTURER'S SERVICES
The equipment manufacturer shall furnish a qualified field technician on site for installation inspection, start-up, and operator training for up to three (3) consecutive days during one (1) trip to the jobsite. The number of days and trips specified shall be included in the contract price.

END OF SECTION

Suggested Specification for a Headworks ${ }^{\circledR}$ Screwpactor ${ }^{\text {M }}$ Revised March 2021

NOTICE: The following specification is written for Grade 304 stainless steel. Changes are required for

 Grade 316 stainless steel.
SHAFTED SPIRAL WASHER/COMPACTOR - HEADWORKS ${ }^{\circledR}$ SCREWPACTOR ${ }^{\text {M }}$

PART 1 - GENERAL

1.01 DESCRIPTION

Furnish, install, and test shafted spiral washer/compactor as indicated on the drawings or specified herein. The compactor shall be supplied complete with controls, inlet hopper(s), and discharge tubing.

1.02 QUALITY ASSURANCE

a. All materials shall be new, of high grade, and with properties best suited to the working environment.
b. Manufacturer shall be successful in the experience of manufacture, operation, and servicing of equipment of type, size, quality, performance, and reliability equal to that specified. The manufacturer shall have furnished equipment of the size and type specified.

1.03 SUBMITTAL

a. The manufacturer shall submit a general arrangement drawing that illustrates the layout of the equipment and principle dimensions, and other related data including descriptive literature, electrical control drawings, and catalog cut sheets for individual components and drive motor data.
b. The manufacturer shall submit the location of the nearest permanent service headquarters of the conveyor/compactor and motor manufacturer for the conveyor/compactor and motor submitted.
c. The manufacturer shall submit operating instructions with descriptive literature indicating materials of construction, weights, principle dimensions, and other important details.

1.04
 DELIVERY, STORAGE, \& HANDLING

a. Shipping
i. Ship equipment, material, and spare parts complete except where partial disassembly is required by transportation regulations, for protection of components, or for installation requirements.
ii. Pack spare parts in containers bearing labels which clearly designate contents and pieces of equipment for which they are intended.
b. Receiving

Store and safeguard equipment, material, and spare parts.

Suggested Specification for a Headworks ${ }^{\circledR}$ Screwpactor $^{\text {M }}$ Revised March 2021

PART 2 - PRODUCTS

2.01 MANUFACTURERS

The shafted spiral washer/compactor shall be the Screwpactor Type SW \qquad as manufactured by Headworks Inc. of Houston, TX. (Type SW220 or Type SW320 or TypeSW420)

2.02
 PROVISIONS

a. The equipment supplied shall be a Qty. () shafted spiral washer/compactor(s) that consist of a shafted spiral, sieve zone, wash zone, press zone, transport zone, discharge tube, drive system, and controls.
b. The system shall be designed to receive, positively convey, and compact screenings discharged from the \qquad . The screenings shall be introduced into the inlet hopper directly over the sieve zone, washed in the wash zone, conveyed through the transport zone, compacted in the press zone, and discharged from the discharge tube into a suitable receptacle (provided by others.).
c. Each shafted spiral washer/compactor shall be capable of batch washing and continuous discharge operation.
d. The shafted spiral washer/compactor shall be capable of effectively washing and dewatering not less than \qquad per hour. (Model SW220: $69 \mathrm{ft}^{3} / \mathrm{hr}$, Model SW320: 123 $\mathrm{ft}^{3} / \mathrm{hr}$, Model SW420: $250 \mathrm{ft}^{3} / \mathrm{hr}$
e. The shafted spiral washer/compactor shall:
i. Reduce screenings volume by a minimum of 50%.
ii. Produce a dry screenings content of $30-35 \%$.
f. Exclusive of the discharge tubing and drive, the shafted spiral washer/compactor shall have a length of approximately \qquad ft [m.] (Maximum length 8 ft [2.5 m])
g. Each unit shall be designed to be installed horizontally.
h. Support legs shall be supplied as required for adequate support under operating conditions. The support legs are a fixed height.
i. Thrust Bearing
i. An independent thrust bearing shall be mounted between the drive and press body to handle the load created during compaction and allow for reversal of the spiral.
ii. The thrust bearing housing shall utilize a tapered roller bearing assembly, a cylindrical roller thrust bearing and two double lip seals.
iii. The bearing assembly shall be designed to handle the load created by the spiral without the need for an end bearing. The end of the shafted spiral shall not rest on the anti-rotation bars.
j. Shafted Spiral Assembly
i. The shafted spiral assembly shall consist of a spiral welded to mechanical tubing. The mechanical tubing shall be welded to drive hub.
ii. The shafted spiral flighting from the sieve zone up to the press zone shall be manufactured from allow steel plate forming a continuous flight welded to the shaft.
iii. The diameter of the shafted spiral assembly shall be_inches [_mm] in diameter

Suggested Specification for a Headworks ${ }^{\circledR}$ Screwpactor $^{\text {M }}$ Revised March 2021

and shall be constant over the length of the assembly. (Model SW220: Nominal 9 inches [230mm], Model SW320: Nominal 11.25 inches [305mm], Model SW420: Nominal 14.5 inches)
iv. The pitch of the spiral shall have one (1) abrasive resistant brush assembly. The brush shall be nylon with a stainless steel holder and held in place by clips and tack welded at the ends of the spiral.
v. The flight thickness shall be \qquad . (Model SW220: 3/8", SW320: 3/4" SW420: $3 / 4^{\prime \prime}$) with a Brinell Hardness of 220.
vi. The pitch of the spiral shall reduce by 66% in the press zone area.
vii. The final pitch of the shafted spiral shall be abrasion resistant (AR) plate (minimum hardness 365 Brinell).
viii. The final pitch of the shafted spiral shall have a larger machined outside diameter to maintain and minimize the gap between the spiral flight and anti-rotation bars to prevent backflow of material.
k. Sieve Zone
i. The sieve zone shall be tubular in design with an integral collection pan and inlet hopper(s) to accept screenings from \qquad _.
ii. The sieve zone shall be manufactured from minimum 11 gauge Grade 304 stainless steel and minimum 16 gauge slotted Grade 304 stainless steel reinforced intermittently. The slots shall be 2.5 mm wide.
iii. The sieve zone shall include an inlet hopper to direct the screenings into the shafted spiral washer/compactor. The inlet hopper shall be constructed of minimum 14 gauge Grade 304 stainless steel and shall be bolted to the transport zone.
I. Transport Zone
i. The transport zone shall be tubular in design and constructed of minimum (Model SW220: 11 Gauge, Model SW320: 3/16-inch-thick, Model SW420: 3/16-inch-thick) Grade 304 stainless steel.
ii. The transport zone shall be fitted with anti-rotation bars constructed of minimum $3 / 16^{\prime \prime}$ thick abrasion resistant (AR) plate steel. The wear bars shall be welded to the inside of the press zone.
m. Wash Zone
i. The wash zone shall be tubular in design with an integral collection pan located directly under the zone. The wash zone shall wash screenings and reduce the organic content.
ii. The wash zone shall be manufactured from minimum (Model SW220: 11 Gauge, Model SW320: 3/16-inch-thick, Model SW420: 3/16-inch-thick) Grade 304 stainless steel and minimum 16 gauge slotted Grade 304 stainless steel reinforced intermittently. The slots shall be 2.5 mm wide.
iii. In addition to the wash water entering through the center of the shafted spiral, the wash zone shall consist of a spray head fitted with two (2) spray nozzles to provide cleaning of screenings before compacting. The wash zone supply water shall be approximately 10 gpm at 40 psi . The wash zone shall include a solenoid valve to control the flow of water into the wash zone. The solenoid valve shall be shipped loose. All interconnecting piping, valves, etc. between the water source,

Suggested Specification for a Headworks ${ }^{\circledR}$ Screwpactor $^{\text {M }}$ Revised March 2021

the wash zone, and the solenoid valve shall be supplied and installed by the installing contractor. If the water pressure requires the use of a Pressure Reducing Valve (PRV) it shall be supplied by and installed by the installing contractor. If the water source is a plant's final effluent, the contractor shall provide a y-strainer with mesh size 40 , equivalent to 470 microns.
n. Press Zone
i. The press zone shall be tubular in design with an integral collection pan located directly under the zone.
ii. The press zone shall be constructed of minimum (Model SW220: 11 Gauge, Model SW320: 3/16 inch thick, Model SW420: 3/16 inch thick) Grade 304 stainless steel.
iii. The press zone shall have perforations to allow water to drain and flush water to move any silts and fines into the collection pan
o. Collection Pan
i. The collection pan shall be a u-trough design located directly under the sieve zone, wash zone, and press zone.
ii. The collection pan shall be constructed of minimum 14 gauge Grade 304 stainless steel and attached to the compactor body with quick release clamps.
iii. Periodically, water shall be introduced into the collection pan to flush organics and other fine particulates to the drain. The collection pan water supply shall be approximately 10 gpm at 40 psi . The flush water shall run five (5) seconds out of every twenty (20) seconds and be field adjustable. The flush water shall flow down to the base of the collection pan to the $3^{\prime \prime}$ pipe drain outlet.
iv. The collection pan shall include a solenoid valve to control the flow of water into the wash zone. The solenoid valve shall be shipped loose. All interconnecting piping, valves, etc. between the water source, the wash zone, and the solenoid valve shall be supplied and installed by the installing contractor. If the water source is a plant's final effluent, the contractor shall provide a y-strainer with mesh size 40 , equivalent to 470 microns.
p. Discharge Tube
i. The discharge tube shall be cylindrical and constructed of minimum 11 gauge Grade 304 stainless steel. The discharge tube shall increase in diameter over its length to reduce the potential for plugging.
ii. The discharge tube shall direct and discharge screenings at a clear discharge height that allows for placement of a suitable receptacle (provided by others) to collect the screenings.
iii. Optional. The discharge tube shall include an integral continuous bagging system. The continuous bagging system shall consist of a plastic bag holder that shall mount on the discharge tube. The holder shall be readily removable for inspection and service.
q. Water Connections
i. The washer/compactor shall be provided with a minimum of two separate connections for introducing spray water into the washer/compactor. One point of introduction shall be into the screenings wash zone. Another introduction point shall be into the flushing connections in the body and collection pan on

Suggested Specification for a Headworks ${ }^{\circledR}$ Screwpactor ${ }^{\text {M }}$ Revised March 2021

the washer/compactor. The washer/compactor shall be designed to accept potable water or plant water (also known as final plant effluent) at a pressure range of 40-60 psi. Higher pressures may require a Pressure Reducing Valve (PRV), which if necessary, shall be provided by and installed by the installing contractor. If the water source is a plant's final effluent, the contractor shall provide a y-strainer with a mesh size 40 , equivalent to 470 microns.
r. Drive System
i. The electric motor shall be maximum $5 \mathrm{hp}, 230 / 460 \mathrm{~V}, 3$ phase, $60 \mathrm{HZ}, \mathrm{TEFC}$, and rated for the required electrical area classification.
ii. The design shall utilize a shaft mounted helical bevel gear reducer driven by a direct coupled motor. The reducer shall have a cast iron housing with an output speed of 14 rpm . The service factor shall be minimum 1.0.
s. Optional. Heat Tracing: The washer/compactor and discharge tube shall be heat traced, insulated, and jacketed. Heat tracing shall be suitable for Class \qquad , Division \qquad areas. Insulation shall be approximately 1" thick. Jacketing shall be of Grade 304 stainless steel material. The surface where heat tracing is installed shall be energized by a thermostat that turns on the heat tracing when the outside air temperature reaches 40 degrees Fahrenheit. Heat tape shall extend outside the pan for field termination in an enclosure provided by manufacturer that houses contactors, thermostat, terminal strips, etc., and is, in turn, wired to the main control panel.

2.03 CONTROLS

a. The washer/compactor control panel enclosure shall be sized as required to house the required components and shall be suitable for wall mounting or mounting to strut-type supports. The enclosure shall be rated NEMA 4X. The control panel shall be pre-wired and tested, requiring only wall mounting and connection to external wiring by the electrical contractor in the field. The panel shall be located in a non-classified area where no corrosive gases are present.
b. The control panel shall be controlled in synchronization with the upstream screening equipment. The washer/compactor shall begin operation whenever the screening equipment begins operation and shall continue operation for a predetermined period of time after the upstream equipment stops.
c. The control panel shall have front panel mounted NEMA $4 X$ pilot lights indicating power, fault, forward, and reverse.
d. The control panel shall include a disconnect, motor starter, control power transformer, adjustable timer, panel heater, elapsed time meter, and other components to allow for sequencing the system.
e. Output dry contacts shall be provided for fault, forward, and reverse.
f. The control panel shall be fitted with an adjustable current switch. Upon a fault, the equipment shall shut down and an alarm contact shall be initiated.
g. A NEMA \qquad local operator station panel shall be provided. The local operator station shall include an automatic/local switch, forward/reverse switch, and an emergency stop.
h. Optional: An emergency pull cord and safety switch shall be provided. The pull cord shall be mounted to the compactor over its full length and be attached to the safety switch. The safety switch shall immediately stop the system when the cord is pulled, and the

Suggested Specification for a Headworks ${ }^{\circledR}$ Screwpactor $^{\text {M }}$ Revised March 2021

switch is actuated.
i. Optional: A loss of rotation sensor shall be provided to detect the screw rotation. The sensor shall be mounted towards the discharge end of the compactor and away from the drive. When the sensor records zero movement of the screw, the system shall immediately stop and initiate an alarm contact.

2.04 Spare Parts

a. The following minimum recommended spare parts shall be provided for each conveyor/compactor:
i. One (1) brush

2.05 SURFACE FINISHES AND COATINGS

a. After all fabrication and welding has been completed, all stainless steel surfaces shall be glass bead blasted prior to equipment assembly. The bead blast shall remove all weld discoloration and surface contaminants and provide for spontaneous passivation as recognized in ASTM A380, Cleaning, Descaling, and Passivation of Stainless Steel Parts, Equipment, and Systems, 1. Scope, 1.1.1.1.
b. All purchased components such as motors, reducers, valves, switches, etc. shall be supplied with the manufacturer's standard finish.

PART 3 - EXCECUTION

3.01 INSTALLATION

Equipment shall be installed in strict conformance with manufacturer's recommendations.

3.02 MANUFACTURER'S SERVICES

The equipment manufacturer shall furnish a qualified field technician on site for installation inspection, start-up, and operator training for up to three (3) consecutive days during one (1) trip to the jobsite. The number of days and trips specified shall be included in the contract price.

END OF SECTION

Section 3

Bar Screen Motor and Gear Reducer Data Take-up Bearing Data Sheet

Screen Drive Data Sheet

Jefferson WPCP

Headworks ${ }^{\circledR}$ MS1 Drive System Data Sheet

Gear Reducer Data:

Type:
Mounting:
Bore:
Speed:
Torque:
Ratio:
Service Factor:
Weight:

Motor Detalls:

Type:

Motor Power:
Service Factor:
Enclosure Type:
Voltage:
Full Load Amps:
Speed:
Frame:
Weight:

SEW Eurodrive Model SA87AM184
M1, Fifteen degrees $\left(15^{\circ}\right)$ to M4
60 mm
14 rpm
17,300 lb-in
123.48
1.76

190 lbs.

Baldor Model VDRX18344T
3 HP
1.0 (1.15 on Sinewave)

XPFC
230/460
8.2/4.1

1755 rpm
182TC
127 Ibs.

Headwarks

Screen Electric Motor Screen Gear Reducer

ヨAI.DOR•RELIANCEB

Customer information packet VDRX18344T

3HP, 1755//1465RPM, 3PH, 60/50HZ, 182TC, XPFC
VARICRAFT POWER SYSTEM INC
Class - CLI GP C,D
Division - Division I

Copyright © All product information within this document is subject to ABB Motors and Mechanical Inc. copyright © protection, unless otherwise noted.

Specifications

Enclosure	XPFC
Frame	182TC
Frame Material	Iron
Frequency	50.00 Hz
	60.00 Hz
Output @ Frequency	2.000 HP @ 50 Hz
	3.000 HP @ 60 Hz
Phase	3
Synchronous Speed @ Frequency	1800 RPM @ 60 HZ
Voltage @ Frequency	230.0 V @ 60 HZ
	190.0 V @ 50 Hz
	380.0 V @ 50 Hz
	460.0 V @ 60 Hz
XP Class and Group	CLI GP C,D
XP Division	Division I
Agency Approvals	CSA EEV
	UR
	CSA
Ambient Temperature	$40^{\circ} \mathrm{C}$
Auxillary Box	No Auxillary Box
Auxillary Box Lead Termination	None
Base Indicator	No Mounting
Bearing Grease Type	Polyrex EM (-20F +300F)
Blower	None
Constant Torque Speed Range	6
Current @ Voltage	8.200 A @ 230.0 V
	7.000 A @ 190.0 V
	4.100 A @ 460.0 V
	3.500 A @ 380.0 V
Design Code	B
Drip Cover	No Drip Cover
Duty Rating	CONT

Part detail

Revision	-
Type	AC
Mech. spec.	
Base	PRD/A
Status	06WGX181
Elec. spec.	06LYG594
Layout	$06-26-2019$
Eff. date	CD0005
CD Diagram	04
Poles	$9 \# 16$
Leads	False
Proprietary	06-20-2019
Created date	

Efficiency @ 100\% Load	89.5 \%
Electrically Isolated Bearing	Not Electrically Isolated
Feedback Device	NO FEEDBACK
Heater Indicator	No Heater
High Voltage Full Load Amps	3.5 a
Insulation Class	F
Inverter Code	Inverter Duty
IP Rating	NONE
KVA Code	J
Lifting Lugs	Standard Lifting Lugs
Locked Bearing Indicator	Locked Bearing
Max Speed	2700 rpm
Motor Lead Termination	Flying Leads
Motor Standards	NEMA
Motor Type	0632M
Mounting Arrangement	F1
Number of Poles	4
Overall Length	18.31 IN
Power Factor	77
Product Family	General Purpose
Pulley Face Code	C-Face
Rodent Screen	None
Service Factor	1.00
Shaft Diameter	1.125 IN
Shaft Ground Indicator	No Shaft Grounding
Shaft Rotation	Reversible
Speed	1755 rpm
Speed Code	Single Speed
Starting Method	Direct on line
Thermal Device - Bearing	None
Thermal Device - Winding	Normally Closed Thermostat
Vibration Sensor Indicator	No Vibration Sensor
Winding Thermal 1	None
Winding Thermal 2	None

Nameplate

Parts list

Part number	Description	Quantity
SA371146	SA 06-0000-0144	1.000 ea
RA360826	RA 06-0000-0144	1.000 ea
LB1115N	LABEL,LIFTING DEVICE (ON ROLLS)	1.000 ea
LB1119N	WARNING LABEL	1.000 ea
LC0145B01	CONNECTION LABEL	1.000 ea
PK3082	STYROFOAM CRADLE	1.000 ea
NP1401XPSLEV	SS XP INV UL CSA-EEV CC CL-I GP-C\&D	1.000 ea
85XU0407S04	4X1/4 U DRIVE PIN STAINLESS	2.000 ea
85XU0407S04	4X1/4 U DRIVE PIN STAINLESS	4.000 ea
MN416A01	TAG-INSTAL-MAINT no wire (1200/bx) 1/21	1.000 ea
LB1081F	ALUM XP CAUTION LABEL (FS PLANT ONLY-	1.000 ea
HW3201A05	3/8-16 EYEBOLT	1.000 ea
06FH1003A06	FH, XP W/GRSR	1.000 ea
51XN1032A14	10-32 X 0.875 HX WS SL SR	4.000 ea
34FN3002A02	EXTERNAL FAN, PLASTIC, .905/.907 HUB W/	1.000 ea
51XB0818A12	8-18X3/4 HXWSSLD SERTYB	1.000 ea
MJ1000A02	GREASE, MOBIL POLYREX EM - 124047	0.050 lb
06EP1709A07	FREP XPFC 205 BRG GRP C W/DRAIN (HW4506A	1.000 ea
10XN3118K20	5/16-18 X $11 / 4$ GRADE 5 STEEL ZC PLATED	4.000 ea
HW1001A31	LOCKWASHER 5/16, ZINC PLT. 591 OD, . 319 I	4.000 ea
HW5100A05	WVY WSHR F/205 \& 304 BRGS	1.000 ea
HW4500A01	1641B(ALEMITE)400 UNIV, GREASE FITT	1.000 ea
HW4500A19	1/4-28X1/4 SLOTTED PLUG F/S	1.000 ea
HW4506A02	BREATHER/DRAIN-EXP PROOF-.125-27 NPTF AI	1.000 ea
HW3022E05	. 125 DIA X . 500 ROLLED SPRING PIN	1.000 ea
06EP1707A17	PUEP 182-4TC M GRP-C DRAIN(HW4506A02)	1.000 ea
HW1001A31	LOCKWASHER 5/16, ZINC PLT. 591 OD, . 319 I	4.000 ea
10XN3118K20	5/16-18 X $11 / 4$ GRADE 5 STEEL ZC PLATED	4.000 ea
HA2071A01	SLINGER ALUM (AUTO)	1.000 ea
80XN1032A06	10-32 X 3/8 SET SC HEX SOCK	1.000 ea
51XN1032A20	$10-32 \times 11 / 4$ HX WS SL SR	2.000 ea

HW4001A01	1/4 HX SOC PIPE PLG (F/S) ALLOY STEEL W/	2.000 ea
60XN1032A07	10-32 X . 4375 TRUSS HEAD, TORX SERRATED	2.000 ea
HW4506A02	BREATHER/DRAIN-EXP PROOF-.125-27 NPTF AI	1.000 ea
HW3022E05	. 125 DIA X .500 ROLLED SPRING PIN	1.000 ea
07CB1000A02	CONDUIT BOX, MODEL 306,EXP. PROOF	1.000 ea
84XN2520J16	1/4-20 1 SOC HD CAP SCREW	4.000 ea
HW1001A25	LOCKWASHER 1/4, ZINC PLT . 493 OD, . 255 I	4.000 ea
WD1000B17	T\&B CX35TN OR L35P TERMINAL LUG	1.000 ea
11XW1032G06	10-32 X .38, TAPTITE II, HEX WSHR SLTD U	1.000 ea
07CB1502A01	CONDUIT BOX LID MACH (DUCTILE IRON)	1.000 ea
84XN2520J16	1/4-20 X 1 SOC HD CAP SCREW	4.000 ea
HW1001A25	LOCKWASHER 1/4, ZINC PLT . 493 OD, . 255 I	4.000 ea
MG1500Y02	WILKOPON PRIMER YELLOW	0.022 ga
MG1025G29	WILKOFAST, 789.229, DARK CHARCOAL GRAY	0.022 ga
G0PA1000	PKG GRP, PRINT PK1026A06	1.000 ea
HW2501E17	. 250 SQUARE $\times 1.875$ LONG LOW CARBON STEE	1.000 ea
HA7000A02	KEY RETAINER RING, $11 / 8$ DIA, $13 / 8$ DIA	1.000 ea

AC Induction Motor Performance Data
Record \# 72220
Typical performance - not guaranteed values

Winding: 06WGX181-R087	Type: 0632M		Enclosure: XPFC
Nameplate Data		460 V, 60 Hz : High Voltage Connection	
Rated Output (HP)	3//2	Full Load Torque	9.08 LB-FT
Volts	230/460//190/380	Start Configuration	direct on line
Full Load Amps	8.2/4.1//7/3.5	Breakdown Torque	33.1 LB-FT
R.P.M.	1755//1465	Pull-up Torque	18.2 LB-FT
Hz	60//50 Phase 3	Locked-rotor Torque	20.4 LB-FT
NEMA Design Code	B KVA Code J	Starting Current	29.8 A
Service Factor (S.F.)	1	No-load Current	2.14 A
NEMA Nom. Eff.	89.5 Power Factor 77	Line-line Res. @ 25C	3.93Ω
Rating - Duty	40C AMB-CONT	Temp. Rise @ Rated Load	$35^{\circ} \mathrm{C}$
S.F. Amps		Temp. Rise @ S.F. Load	$42^{\circ} \mathrm{C}$
		Locked-rotor Power Factor	41.4
		Rotor inertia	0.298 LB-FT2

Load Characteristics 460 V, 60 Hz, 3 HP

| \% of Rated Load | $\mathbf{2 5}$ | $\mathbf{5 0}$ | $\mathbf{7 5}$ | $\mathbf{1 0 0}$ | $\mathbf{1 2 5}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Power Factor | 38 | 58 | $\mathbf{1 5 0}$ | | |
| Efficiency | 83.5 | 88.9 | $\mathbf{7 0}$ | 83 | |
| Speed | 1790 | 1779 | 90 | 89.8 | 89.1 |
| Line amperes | 2.34 | 2.79 | 1769 | 1757 | 1744 |

AC Induction Motor Performance Data
Record \# 72221
Typical performance - not guaranteed values

Winding: 06WGX181-R087	Type: 0632M		Enclosure: XPFC
Nameplate Data		380 V, 50 Hz : High Voltage Connection	
Rated Output (HP)	3//2	Full Load Torque	7.25 LB-FT
Volts	230/460//190/380	Start Configuration	direct on line
Full Load Amps	8.2/4.1//7/3.5	Breakdown Torque	31.25 LB-FT
R.P.M.	1755//1465	Pull-up Torque	18.55 LB-FT
Hz	60//50 Phase 3	Locked-rotor Torque	20.79 LB-FT
NEMA Design Code	B KVA Code J	Starting Current	28.72 A
Service Factor (S.F.)	1	No-load Current	2.11 A
NEMA Nom. Eff.	89.5 Power Factor 77	Line-line Res. @ 25C	3.93Ω
Rating - Duty	40C AMB-CONT	Temp. Rise @ Rated Load	$28^{\circ} \mathrm{C}$
S.F. Amps		Temp. Rise @ S.F. Load	$32^{\circ} \mathrm{C}$
		Locked-rotor Power Factor	46.1
		Rotor inertia	0.298 LB-FT2

Load Characteristics 380 V, 50 Hz, 2 HP

| \% of Rated Load | $\mathbf{2 5}$ | $\mathbf{5 0}$ | $\mathbf{7 5}$ | $\mathbf{1 0 0}$ | $\mathbf{1 2 5}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Power Factor | 33 | 52 | 65 | 78 | 81 |
| Efficiency | 79.7 | 86.5 | 88.4 | 88.7 | 88.4 |
| Speed | 1491 | 1483 | 1474 | 1465 | 1455 |
| Line amperes | 2.25 | 2.57 | 3.01 | 3.53 | 4.14 |

3 Nomenclature

3.1 Overview

The nomenclature (model number) of a gear unit or gearmotor starts from the output shaft. For a gear unit, the nomenclature consists of nine fields, as shown in the two examples below. Detailed explanation of each field begins on the next page.

04669US

Nomenclature
Overview

Explanation of each option field is shown below.

1-Gear type

Nomenclature		
RX	Helical-parallel (1 stage gearing)	
R	Helical-parallel (2 or 3 stage)	
F		
the Snuggler ${ }^{\circledR}$		
Helical-parallel		

2 - Shaft type

Nomenclature	
(blank)	Solid shaft with keyway
A	Hollow shaft with key
H	Hollow shaft with keyless shrink disc
V	Hollow shaft with DIN 5480 spline
T	TorqLOC ${ }^{\circledR}$ - keyless hollow shaft with tapered-bushing

3 - Flange type

| Nomenclature | Description | | Availability (Gear Type) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | R | F | K | S | W | |
| (blank) | No flange (foot mounting) | \bullet | \bullet | \bullet | \bullet | \bullet |
| F | B5 flange on one side with tenon
 and through holes | \bullet | \bullet | \bullet | \bullet | \bullet |
| F1) | B5 flange on two sides with tenon
 and through holes | | | \bullet | \bullet | |
| Z | B14 flange with tenon and tapped
 holes | \bullet | \bullet | \bullet | \bullet | |
| M | B5 flange with extended bearing
 housing for agitators | \bullet | | | | |

1) For flange on both sides, specify "AB" in mounting position (ex: M1AB)

SHZ..
B14 flange-mounted + hollow shaft and keyless shrink disc

52189axx

3.3 Input assemblies

The following figure shows the available input components:
65735AUS

2.6.2 AM motor adapter - IEC or NEMA

The following figure shows a helical-worm gear unit (S-series) with AM adapter:

04588AXX
AM adapters are used for mounting motors to SEW gear units according to IEC standard or NEMA (type C or TC) .
Adapters are available for sizes 63 to 280 for IEC motors. Adapters are available for sizes 56 to 365 for NEMA motors. The designation of the adapter size corresponds to the respective IEC or NEMA motor size.
Torque is transmitted between the motor and the gear unit via a fail-safe jaw-type coupling. Vibrations and shock occurring during operation are effectively dampened by a polyurethane "spider" ring gear that fits between the two coupling halves, as shown below.

5 Mounting Positions

5.1 General information

The following figure shows the position of the gear unit in mounting positions M1 to M6:

5 Mounting Positions
S-series helical-worm

SA/SH/ST47-97

[^3]
Important:

For proper torque arm mounting and design, see Technical Note GM-021 available from www.seweurodrive.com

50414axx
11.1.8 S87

S87, $\mathrm{n}_{\mathrm{e}}=1700 \mathrm{rpm}$

20100 lb-in

Stages	$\begin{gathered} \mathbf{i} \\ \text { [ratio] } \end{gathered}$	$\begin{gathered} \mathrm{n}_{\mathrm{a}} \\ {[\mathrm{rpm}]} \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{a} \text { max }} \\ & {[\mathrm{lb}-\mathrm{in}]} \end{aligned}$	$\begin{aligned} & \begin{array}{l} \mathrm{F}_{\mathrm{Ra}} \\ {[\mathrm{lb}]} \end{array} \end{aligned}$	$\begin{gathered} \Phi_{(1 R)} \\ {\left[{ }^{\prime}\right]} \end{gathered}$	143	145	AM		213/215	254/256	284/286
								182	184			
	7.88	216	7340	3490	-							
	9.07	187	8400	3530	-							
	10.93	156	9990	3580	-							
	12.21	139	10900	3480	-							
	14.06	121	10900	3830	-							
	15.64	109	10900	4000	-							
	17.49	97	10900	4190	-							
	19.70	86	10900	4400	-							
	20.27	84	12500	4760	-							
	21.43	79	10900	4550	-							
	24.43	70	14100	4950	-							
	25.50	67	10900	4870	-							
	27.28	62	14100	5160	-							
	31.43	54	14100	5440	-							
	34.96	49	14100	5660	-							
	39.10	43	14100	5900	-							
	44.03	39	14100	6160	-							
	47.91	35	14100	6360	-							
	57.00	30	14100	6520	-							
	64.00	27	13900	6530	-							
	64.27	26	14100	6520	-							
	70.43	24	14100	6520	-							
	77.14	22	15000	6500	-							
	81.76	21	14100	6520	-							
	86.15	20	15600	6470	-							
	91.20	19	13300	6540	-							
	99.26	17	16200	6450	-							
	110.40	15	16800	6430								
	123.48	14	17300	6410	-							
	139.05	12	$1 / 800$	6380	-							
	151.30	11	18200	6370	-							
	180.00	9.4	18800	6340	-							
	202.96	8.4	19300	6320	-							
	222.40	7.6	19500	6310	-							
	258.18	6.6	19900	6290	-							
	288.00	5.9	20100	6280	-							

| Weight [lbs] | | Stages | $\mathbf{1 4 3}$ | $\mathbf{1 4 5}$ | $\mathbf{1 8 2}$ | $\mathbf{1 8 4}$ | $\mathbf{2 1 3 / 2 1 5}$ | $\mathbf{2 5 4 / 2 5 6}$ | $\mathbf{2 8 4 / 2 8 6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S87 | NEMA | 2 | 185 | 185 | 195 | 195 | 210 | 240 | $\mathbf{2 4 5}$ |
| | | | $\mathbf{8 0}$ | $\mathbf{9 0}$ | $\mathbf{1 0 0}$ | $\mathbf{1 1 2}$ | $\mathbf{1 3 2 S} / \mathrm{M}$ | $\mathbf{1 6 0}$ | $\mathbf{1 8 0}$ |
| | IEC | 2 | 185 | 185 | 200 | 200 | 215 | 250 | $\mathbf{2 5 0}$ |

$(\rightarrow$ Ddd 132)	B	B5	C5	E5	F5	G5	L	L1	L5	S5	T1	U	U1	Z5
AM143	1.68 in	4.50 in	12	5.875 in	4.5	170	439	2.25 in	0.13 in	10.5	0.98 in	0.875 in	0.188 in	98.5
AM145	1.68 in	4.50 in	12	5.875 in	4.5	170	439	2.25 in	0.13 in	10.5	0.98 in	0.875 in	0.188 in	98.5
AM182	2.10 in	8.50 in	10	7.25 in	5	228	475	2.75 in	0.13 in	15	1.24 in	1.125 in	0.250 in	134.5
AM184	2.10 in	8.50 in	10	7.25 in	5	228	475	2.75 in	0.13 in	15	1.24 in	1.125 in	0.250 in	134.5
AM213/215	2.76 in	8.50 in	11	7.25 in	5	228	524	3.38 in	0.25 in	15	1.52 in	1.375 in	0.312 in	183.5
AM254/256	3.65 in	8.50 in	14	7.25 in	5	228	574	4.00 in	0.25 in	15	1.80 in	1.625 in	0.375 in	234
AM284/286	4.00 in	10.50 in	15	9.00 in	5	286	581	4.62 in	0.25 in	15	2.10 in	1.875 in	0.500 in	241

Note: Dimensions in mm unless otherwise noted. For all available output shaft diameters, see page 684. For dimensions of compound gear units (ex: SA87R57) see page 648.
11.11.4 Hollow shaft - Metric

All dimensions in mm								
Model	D	D_{7}	O_{8}	T	U	L_{8}	L_{9}	M
SA.. 37	20	35	120	22.8	6	104	8	M6 x 16
SA.. 47	25	45	120	28.3	8	105	17	M10 $\times 25$
	30	45	120	33.3	8	105	17	M10 $\times 25$
SA.. 57	30	50	150	33.3	8	132	17	M10 $\times 25$
	35	50	150	38.3	10	132	22	M12 $\times 30$
SA.. 67	40	65	168	43.3	12	144	29	M16 $\times 40$
	45	65	168	48.3	14	144	29	M16 $\times 40$
SA.. 77	50	80	210	53.8	14	183	32	M16 $\times 45$
	60	80	210	64.4	18	180	37	M 20×50
SA.. 87	60	95	250	64.4	18	220	36	M20 $\times 50$
	70	95	250	74.9	20	220	34	M 20×50
SA.. 97	70	120	290	74.9	20	260	34	M 20×50
	90	120	290	95.4	25	255	41	M 24×60

Section 4

Screwpactor Motor and Gear Reducer Data ASCO Solenoid Valve Cut Sheets

Headwarks

Screwpactor Drive Data Sheet

Jefferson WPCP

Headworks ${ }^{\circledR}$ SW Drive System Data Sheet

Gear Reducer Data:

Type:Mounting:M4
Bore: 60 mm
Speed: 13 rpm
Torque: 23,900 lb-in
Ratio: 126.91
Service Factor: 1.83
Weight: 193 lbs.
Motor Details:
Type:
Motor Power: 3 HP
Service Factor: 1.0(1.15 on Sinewave)
Enclosure Type: XPFC
Voltage: 230/460
Full Load Amps: 8.2/4.1
Speed: 1755 rpm
Frame: 182TC
Weight: 127 lbs.

Headwarks

Screwpactor Electric Motor and Gear Reducer

ヨAI.DOR•RELIANCEB

Customer information packet VDRX18344T

3HP, 1755//1465RPM, 3PH, 60/50HZ, 182TC, XPFC
VARICRAFT POWER SYSTEM INC
Class - CLI GP C,D
Division - Division I

Copyright © All product information within this document is subject to ABB Motors and Mechanical Inc. copyright © protection, unless otherwise noted.

Specifications

Enclosure	XPFC
Frame	182TC
Frame Material	Iron
Frequency	50.00 Hz
	60.00 Hz
Output @ Frequency	2.000 HP @ 50 Hz
	3.000 HP @ 60 Hz
Phase	3
Synchronous Speed @ Frequency	1800 RPM @ 60 HZ
Voltage @ Frequency	230.0 V @ 60 HZ
	190.0 V @ 50 Hz
	380.0 V @ 50 Hz
	460.0 V @ 60 Hz
XP Class and Group	CLI GP C,D
XP Division	Division I
Agency Approvals	CSA EEV
	UR
	CSA
Ambient Temperature	$40^{\circ} \mathrm{C}$
Auxillary Box	No Auxillary Box
Auxillary Box Lead Termination	None
Base Indicator	No Mounting
Bearing Grease Type	Polyrex EM (-20F +300F)
Blower	None
Constant Torque Speed Range	6
Current @ Voltage	8.200 A @ 230.0 V
	7.000 A @ 190.0 V
	4.100 A @ 460.0 V
	3.500 A @ 380.0 V
Design Code	B
Drip Cover	No Drip Cover
Duty Rating	CONT

Part detail

Revision	-
Type	AC
Mech. spec.	
Base	PRD/A
Status	06WGX181
Elec. spec.	06LYG594
Layout	$06-26-2019$
Eff. date	CD0005
CD Diagram	04
Poles	$9 \# 16$
Leads	False
Proprietary	06-20-2019
Created date	

Efficiency @ 100\% Load	89.5 \%
Electrically Isolated Bearing	Not Electrically Isolated
Feedback Device	NO FEEDBACK
Heater Indicator	No Heater
High Voltage Full Load Amps	3.5 a
Insulation Class	F
Inverter Code	Inverter Duty
IP Rating	NONE
KVA Code	J
Lifting Lugs	Standard Lifting Lugs
Locked Bearing Indicator	Locked Bearing
Max Speed	2700 rpm
Motor Lead Termination	Flying Leads
Motor Standards	NEMA
Motor Type	0632M
Mounting Arrangement	F1
Number of Poles	4
Overall Length	18.31 IN
Power Factor	77
Product Family	General Purpose
Pulley Face Code	C-Face
Rodent Screen	None
Service Factor	1.00
Shaft Diameter	1.125 IN
Shaft Ground Indicator	No Shaft Grounding
Shaft Rotation	Reversible
Speed	1755 rpm
Speed Code	Single Speed
Starting Method	Direct on line
Thermal Device - Bearing	None
Thermal Device - Winding	Normally Closed Thermostat
Vibration Sensor Indicator	No Vibration Sensor
Winding Thermal 1	None
Winding Thermal 2	None

Nameplate

Parts list

Part number	Description	Quantity
SA371146	SA 06-0000-0144	1.000 ea
RA360826	RA 06-0000-0144	1.000 ea
LB1115N	LABEL,LIFTING DEVICE (ON ROLLS)	1.000 ea
LB1119N	WARNING LABEL	1.000 ea
LC0145B01	CONNECTION LABEL	1.000 ea
PK3082	STYROFOAM CRADLE	1.000 ea
NP1401XPSLEV	SS XP INV UL CSA-EEV CC CL-I GP-C\&D	1.000 ea
85XU0407S04	4X1/4 U DRIVE PIN STAINLESS	2.000 ea
85XU0407S04	4X1/4 U DRIVE PIN STAINLESS	4.000 ea
MN416A01	TAG-INSTAL-MAINT no wire (1200/bx) 1/21	1.000 ea
LB1081F	ALUM XP CAUTION LABEL (FS PLANT ONLY-	1.000 ea
HW3201A05	3/8-16 EYEBOLT	1.000 ea
06FH1003A06	FH, XP W/GRSR	1.000 ea
51XN1032A14	10-32 X 0.875 HX WS SL SR	4.000 ea
34FN3002A02	EXTERNAL FAN, PLASTIC, .905/.907 HUB W/	1.000 ea
51XB0818A12	8-18X3/4 HXWSSLD SERTYB	1.000 ea
MJ1000A02	GREASE, MOBIL POLYREX EM - 124047	0.050 lb
06EP1709A07	FREP XPFC 205 BRG GRP C W/DRAIN (HW4506A	1.000 ea
10XN3118K20	5/16-18 X $11 / 4$ GRADE 5 STEEL ZC PLATED	4.000 ea
HW1001A31	LOCKWASHER 5/16, ZINC PLT. 591 OD, . 319 I	4.000 ea
HW5100A05	WVY WSHR F/205 \& 304 BRGS	1.000 ea
HW4500A01	1641B(ALEMITE)400 UNIV, GREASE FITT	1.000 ea
HW4500A19	1/4-28X1/4 SLOTTED PLUG F/S	1.000 ea
HW4506A02	BREATHER/DRAIN-EXP PROOF-.125-27 NPTF AI	1.000 ea
HW3022E05	. 125 DIA X . 500 ROLLED SPRING PIN	1.000 ea
06EP1707A17	PUEP 182-4TC M GRP-C DRAIN(HW4506A02)	1.000 ea
HW1001A31	LOCKWASHER 5/16, ZINC PLT. 591 OD, . 319 I	4.000 ea
10XN3118K20	5/16-18 X $11 / 4$ GRADE 5 STEEL ZC PLATED	4.000 ea
HA2071A01	SLINGER ALUM (AUTO)	1.000 ea
80XN1032A06	10-32 X 3/8 SET SC HEX SOCK	1.000 ea
51XN1032A20	$10-32 \times 11 / 4$ HX WS SL SR	2.000 ea

HW4001A01	1/4 HX SOC PIPE PLG (F/S) ALLOY STEEL W/	2.000 ea
60XN1032A07	10-32 X . 4375 TRUSS HEAD, TORX SERRATED	2.000 ea
HW4506A02	BREATHER/DRAIN-EXP PROOF-.125-27 NPTF AI	1.000 ea
HW3022E05	. 125 DIA X .500 ROLLED SPRING PIN	1.000 ea
07CB1000A02	CONDUIT BOX, MODEL 306,EXP. PROOF	1.000 ea
84XN2520J16	1/4-20 1 SOC HD CAP SCREW	4.000 ea
HW1001A25	LOCKWASHER 1/4, ZINC PLT . 493 OD, . 255 I	4.000 ea
WD1000B17	T\&B CX35TN OR L35P TERMINAL LUG	1.000 ea
11XW1032G06	10-32 X .38, TAPTITE II, HEX WSHR SLTD U	1.000 ea
07CB1502A01	CONDUIT BOX LID MACH (DUCTILE IRON)	1.000 ea
84XN2520J16	1/4-20 X 1 SOC HD CAP SCREW	4.000 ea
HW1001A25	LOCKWASHER 1/4, ZINC PLT . 493 OD, . 255 I	4.000 ea
MG1500Y02	WILKOPON PRIMER YELLOW	0.022 ga
MG1025G29	WILKOFAST, 789.229, DARK CHARCOAL GRAY	0.022 ga
G0PA1000	PKG GRP, PRINT PK1026A06	1.000 ea
HW2501E17	. 250 SQUARE $\times 1.875$ LONG LOW CARBON STEE	1.000 ea
HA7000A02	KEY RETAINER RING, $11 / 8$ DIA, $13 / 8$ DIA	1.000 ea

AC Induction Motor Performance Data
Record \# 72220
Typical performance - not guaranteed values

Winding: 06WGX181-R087	Type: 0632M		Enclosure: XPFC
Nameplate Data		460 V, 60 Hz : High Voltage Connection	
Rated Output (HP)	3//2	Full Load Torque	9.08 LB-FT
Volts	230/460//190/380	Start Configuration	direct on line
Full Load Amps	8.2/4.1//7/3.5	Breakdown Torque	33.1 LB-FT
R.P.M.	1755//1465	Pull-up Torque	18.2 LB-FT
Hz	60//50 Phase 3	Locked-rotor Torque	20.4 LB-FT
NEMA Design Code	B KVA Code J	Starting Current	29.8 A
Service Factor (S.F.)	1	No-load Current	2.14 A
NEMA Nom. Eff.	89.5 Power Factor 77	Line-line Res. @ 25C	3.93Ω
Rating - Duty	40C AMB-CONT	Temp. Rise @ Rated Load	$35^{\circ} \mathrm{C}$
S.F. Amps		Temp. Rise @ S.F. Load	$42^{\circ} \mathrm{C}$
		Locked-rotor Power Factor	41.4
		Rotor inertia	0.298 LB-FT2

Load Characteristics 460 V, 60 Hz, 3 HP

| \% of Rated Load | $\mathbf{2 5}$ | $\mathbf{5 0}$ | $\mathbf{7 5}$ | $\mathbf{1 0 0}$ | $\mathbf{1 2 5}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Power Factor | 38 | 58 | $\mathbf{1 5 0}$ | | |
| Efficiency | 83.5 | 88.9 | $\mathbf{7 0}$ | 83 | |
| Speed | 1790 | 1779 | 90 | 89.8 | 89.1 |
| Line amperes | 2.34 | 2.79 | 1769 | 1757 | 1744 |

AC Induction Motor Performance Data
Record \# 72221
Typical performance - not guaranteed values

Winding: 06WGX181-R087	Type: 0632M		Enclosure: XPFC
Nameplate Data		380 V, 50 Hz : High Voltage Connection	
Rated Output (HP)	3//2	Full Load Torque	7.25 LB-FT
Volts	230/460//190/380	Start Configuration	direct on line
Full Load Amps	8.2/4.1//7/3.5	Breakdown Torque	31.25 LB-FT
R.P.M.	1755//1465	Pull-up Torque	18.55 LB-FT
Hz	60//50 Phase 3	Locked-rotor Torque	20.79 LB-FT
NEMA Design Code	B KVA Code J	Starting Current	28.72 A
Service Factor (S.F.)	1	No-load Current	2.11 A
NEMA Nom. Eff.	89.5 Power Factor 77	Line-line Res. @ 25C	3.93Ω
Rating - Duty	40C AMB-CONT	Temp. Rise @ Rated Load	$28^{\circ} \mathrm{C}$
S.F. Amps		Temp. Rise @ S.F. Load	$32^{\circ} \mathrm{C}$
		Locked-rotor Power Factor	46.1
		Rotor inertia	0.298 LB-FT2

Load Characteristics 380 V, 50 Hz, 2 HP

| \% of Rated Load | $\mathbf{2 5}$ | $\mathbf{5 0}$ | $\mathbf{7 5}$ | $\mathbf{1 0 0}$ | $\mathbf{1 2 5}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Power Factor | 33 | 52 | 65 | 78 | 81 |
| Efficiency | 79.7 | 86.5 | 88.4 | 88.7 | 88.4 |
| Speed | 1491 | 1483 | 1474 | 1465 | 1455 |
| Line amperes | 2.25 | 2.57 | 3.01 | 3.53 | 4.14 |

3 Nomenclature

3.1 Overview

The nomenclature (model number) of a gear unit or gearmotor starts from the output shaft. For a gear unit, the nomenclature consists of nine fields, as shown in the two examples below. Detailed explanation of each field begins on the next page.

04669US

Nomenclature
Overview

Explanation of each option field is shown below.

1-Gear type

2 - Shaft type

	Nomenclature
	(blank)

3 - Flange type

Nomenclature	Description	Availability (Gear Type)				
		R	F	K	S	W
(blank)	No flange (foot mounting)	-	-	\bullet	-	-
F	B5 flange on one side with tenon and through holes	\bullet	-	-	\bullet	-
F^{1}	B5 flange on two sides with tenon and through holes			\bullet	\bullet	
Z	B14 flange with tenon and tapped holes	\bullet	-	-	\bullet	
M	B5 flange with extended bearing housing for agitators	\bullet				

1) For flange on both sides, specify "AB" in mounting position (ex: M1AB)

KHF..
B5 flange-mounted + hollow shaft with keyless shrink disc
KTF..
B5 flange-mounted + hollow shaft with TorqLOC ${ }^{\circledR}$ keyless tapered-bushing system

KA..
Hollow shaft with key
KV..
Hollow shaft with DIN 5480 spline

KH..
Hollow shaft with keyless shrink disc
KT..
Hollow shaft with TorqLOC ${ }^{\circledR}$ keyless tapered-bushing system

KAZ..

B14 flange-mounted + hollow shaft with key
KVZ.
B14 flange-mounted + hollow shaft with DIN 5480 spline

KHZ.
B14 flange-mounted + hollow shaft with keyless shrink disc

52187axx

3.3 Input assemblies

The following figure shows the available input components:
65735AUS

W. 7

2.6.2 AM motor adapter - IEC or NEMA

The following figure shows a helical-worm gear unit (S-series) with AM adapter:

04588AXX
AM adapters are used for mounting motors to SEW gear units according to IEC standard or NEMA (type C or TC) .
Adapters are available for sizes 63 to 280 for IEC motors. Adapters are available for sizes 56 to 365 for NEMA motors. The designation of the adapter size corresponds to the respective IEC or NEMA motor size.
Torque is transmitted between the motor and the gear unit via a fail-safe jaw-type coupling. Vibrations and shock occurring during operation are effectively dampened by a polyurethane "spider" ring gear that fits between the two coupling halves, as shown below.

5 Mounting Positions

5.1 General information

The following figure shows the position of the gear unit in mounting positions M1 to M6:

5 Mounting Positions
K-series helical-bevel

$* \rightarrow$ page 45 on
thermal losses

Important:
Proper alignment must be ensured when mounting a hollowshaft gear unit with feet. See Technical Note GM-019 available from www.seweurodrive.com

10 K - Helical Bevel

10.1 K.. AM

50405AXX

10.1.15 K87

$\mathrm{K} 87, \mathrm{n}_{\mathrm{e}}=1700 \mathrm{rpm}$											23900 lb-in	
	i	n_{a}	$T_{a \max }$	F_{Ra}	$\Phi_{\text {(IR) }}$	AM						
Stages	[ratio]	[rpm]	[lb-in]	[lb]	[']	143	145	182	184	213/215	254/256	284/286
	7.21	236	11500	2720	7							
	8.29	205	12300	2780	7							
	10.00	170	13200	2920	7							
	11.17	152	13200	3080	7							
	12.56	135	17600	3030	6							
	14.45	118	18500	3150	6							
	16.00	106	15900	3290	6							
	17.42	98	19400	3350	6							
	19.45	87	20300	3440	6							
	22.41	76	20300	3680	6							
	24.92	68	22100	3680	6							
	27.88	61	23000	3790	6							
	31.39	54	23900	3930	6							
	36.52	47	22100	4400	6							
	44.02	39	23000	4700	6							
	49.16	35	23900	4840	5							
	56.64	30	23900	5160	5							
	63.00	27	23900	5410	5							
	70.46	24	23900	5670	5							
	79.34	21	23900	5970	5							
	86.34	20	23900	6130	5							
	102.71	17	23900	6130	5							
	115.82	15	23900	6130	5							
	126.91	13	23900	6130	5							
	147.32	12	23900	6130	5							
	164.34	10	23900	6130	5							
	174.19	9.8	23900	6130	5							
	197.37	8.6	23900	6130	5							

Weight [lbs]		Stages	AM							
		143	145	182	184	213/215	254/256	284/286		
K87	NEMA		3	210	210	220	220	235	260	265
			80	90	100	112	132S/M	160	180	
	IEC	3	210	210	220	220	240	275	275	

KA87: -27 lbs KAF87: +2 lbs/KF87: +20 lbs
KH87..

K.. /T

$(\rightarrow$ LDd 132)	B	B5	C5	E5	F5	G5	L	L1	L5	S5	T1	U	U1	Z5
AM143	1.68 in	4.50 in	12	5.875 in	4.5	170	489	2.25 in	0.13 in	10.5	0.98 in	0.875 in	0.188 in	98.5
AM145	1.68 in	4.50 in	12	5.875 in	4.5	170	489	2.25 in	0.13 in	10.5	0.98 in	0.875 in	0.188 in	98.5
AM182	2.10 in	8.50 in	10	7.25 in	5	228	525	2.75 in	0.13 in	15	1.24 in	1.125 in	0.250 in	134.5
AM184	2.10 in	8.50 in	10	7.25 in	5	228	525	2.75 in	0.13 in	15	1.24 in	1.125 in	0.250 in	134.5
AM213/215	2.76 in	8.50 in	11	7.25 in	5	228	574	3.38 in	0.25 in	15	1.52 in	1.375 in	0.312 in	183.5
AM254/256	3.65 in	8.50 in	14	7.25 in	5	228	624	4.00 in	0.25 in	15	1.80 in	1.625 in	0.375 in	234
AM284/286	4.00 in	10.50 in	15	9.00 in	5	286	631	4.62 in	0.25 in	15	2.10 in	1.875 in	0.500 in	241

Note: Dimensions in mm unless otherwise noted. For all available output shaft diameters, see page 575. For dimensions of compound gear units (ex: KA87R57) see page 565.

10.10.4 Hollow shaft - Metric

All dimensions in mm								
Model	D	D_{7}	O_{8}	T	U	L_{8}	L_{9}	M
KA.. 19	20	30	108	22.8	6	92	8	M6 x 16
KA. 29	25	40	122	27	8	107	17	M10 $\times 25$
KA. 37	30	45	120	33.3	8	105	17	M10 $\times 25$
KA 39	30	50	155	33.3	8	137	17	M10 $\times 25$
KA..39	35	50	155	38.3	10	137	17	M12 $\times 30$
KA 47	30	50	150	33.3	8	132	16	M10 $\times 25$
KA.. 47	35	50	150	38.3	10	132	22	M12 $\times 30$
	35	55	178	38.3	10	160	22	M12 $\times 30$
KA.. 49	40	55	178	43.3	12	160	22	M12 $\times 30$
KA.. 57	40	55	166	43.3	12	142	29	M16 $\times 40$
KA.. 67	40	55	180	43.3	12	156	29	M16 $\times 40$
KA. 77	50	70	210	53.8	14	183	32	M16 $\times 45$
KA.. 87	60	85	240	64.4	18	210	36	M20 $\times 50$
KA.. 97	70	95	300	74.9	20	270	34	M 20×50
KA 107	80	118	350	85.4	22	313	30	M 20×50
KA.. 107	90	118	350	95.4	25	313	40	M 24×60
KA.. 127	100	135	410	106.4	28	373	38	M 24×60
KA.. 157	120	155	500	127.4	32	460	36	M 24×60

Headwarks

ASCO Solenoid Valves

Features

- Pilot operated, normally open or normally closed
- Snubber slows disc closing speed to protect system against water hammer damage more effectively than other techniques
- Pressure spike due to water hammer is reduced to a point eliminating the need for suppressors or other controls in most water systems
- Fluid Controls Institute Inc. evaluations have classified these valves:
Pipe Sizes
FCI-82-1 Class
3/8", 1/2", 3/4"
1", 1 1/4", 1 1/2", 2", 2 1/2"
CC

Construction

Valve Parts in Contact with Fluids	
Body	Brass
Disc	NBR
Seals	PTFE \& NBR
Core Tube	305 Stainless Steel
Core and Plugnut	430F Stainless Steel
Springs	302 Stainless Steel
Piston	Stainless Steel or Brass
Shading Coil	Copper

Electrical

Standard Coil and Class of Insulation	Watt Rating and Power Consumption				Spare Coil Part No.			
	DC Watts	AC			General Purpose		Explosionproof	
		Watts	VA Holding	VA	AC	DC	AC	DC
F	11.6	6.1	16	30	238210	238710	238214	238714
F	16.8	16.1	35	95	272610	97617	272614	97617
F	22.6	-	-	-	-	238710	-	238714

Standard Voltages: 24, 120, 240, 480 volts AC, 60 Hz (or 110, 220 volts AC, 50 Hz). $6,12,24,120,240$ volts DC. Must be specified when ordering. Other voltages are available when required.

Solenoid Enclosures

Standard: RedHat II - Watertight, Types 1, 2, 3, 3S, 4, and 4X; RedHat - Type I.
Optional: RedHat II - Explosionproof and Watertight, Types 3, 3S, 4, 4X, 6,
6P, 7, and 9; RedHat - Explosionproof and Raintight, Types 3,
7, and 9. (To order, add prefix "EF" to catalog number.)
See Optional Features Section for other available options.

Nominal Ambient Temp. Ranges:

RedHat II/
RedHat AC: $32^{\circ} \mathrm{F}$ to $125^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.52^{\circ} \mathrm{C}\right)$
RedHat II DC: $32^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$
RedHat DC: $32^{\circ} \mathrm{F}$ to $77^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.25^{\circ} \mathrm{C}\right)$ ($104^{\circ} \mathrm{F} / 40^{\circ} \mathrm{C}$ occasionally)
Refer to Engineering Section for details.

Approvals:

CSA certified. UL listed, General Purpose Valves. RedHat II meets applicable CE directives.
Refer to Engineering Section for details.

Specifications (English units)

Pipe Size (ins.)	Orifice Size (ins.)	Cv Flow Factor	Operating Pressure Differential (psi)			Max. Fluid Temp. ${ }^{\circ} \mathrm{F}$		Brass Body	Const. Ref.	Watt Rating/ Class of Coil Insulation (3)			
				Max. AC	Max. DC								
			Min. (1)	Water (2)	Water (2)	AC	DC	Catalog Number		AC	DC		
NORMALLY CLOSED (Closed when de-energized)													
3/8	9/16	3	5	150	125	180	150	8221G001	1	6.1/F	11.6/F		
1/2	9/16	3.5	5	150	125	180	150	8221G003	1	6.1/F	11.6/F		
3/4	3/4	5.5	5	150	125	180	150	8221G005	2	6.1/F	11.6/F		
1	1	11.5	5	150	125	180	150	$8221 \mathrm{G007}$	5	6.1/F	11.6/F		
$11 / 4$	$11 / 8$	13	5	150	125	180	150	8221G009	6	6.1/F	11.6/F		
11/2	11/4	24	5	150	125	180	150	8221G011	For Explosion Proof NEMA 7 solenoid valve, print "EF" before the Catalog No.				
2	$13 / 4$	36	5	150	125	180	150	8221G013					
$21 / 2$	$13 / 4$	38	5	150	125	180	150	8221G015					
NORMALLY OPEN (Open when de-energized)													
3/8	9/16	3	5	-	125	-	150	8221021	15	-	16.8/F		
3/8	9/16	3	5	150	-	180	-	8221G021	3	16.1/F	-		
1/2	9/16	3.5	5	-	125	-	150	8221023	15	-	16.8/F		
1/2	9/16	3.5	5	150	-	180	-	8221G023	3	16.1/F	-		
3/4	3/4	5.5	5	-	125	-	150	8221025	16	-	16.8/F		
3/4	3/4	5.5	5	150	-	180	-	8221G025	4	16.1/F	-		
1	1	11.5	5	-	125	-	150	8221027	17	-	16.8/F		
1	1	11.5	5	150	-	180	-	8221G027	8	16.1/F	-		
$11 / 4$	11/8	13	5	-	125	-	150	8221029	18	-	16.8/F		
$11 / 4$	$11 / 8$	13	5	150	-	180	-	8221G029	9	16.1/F	-		
11/2	$11 / 4$	24	5	-	125	-	150	8221031	19	-	16.8/F		
11/2	$11 / 4$	24	5	150	-	180	-	8221G031	10	16.1/F	-		
2	$13 / 4$	36	5	-	125	-	150	8221033	20	-	16.8/F		
2	$13 / 4$	36	5	150	-	180	-	8221G033	13	16.1/F	-		
$21 / 2$	$13 / 4$	38	5	-	125	-	150	8221035	21	-	16.8/F		
$21 / 2$	$13 / 4$	38	5	150	-	180	-	8221G035	14	16.1/F			

[^4]Dimensions: inches (mm)

\boldsymbol{y}

Const. Re. 7, 11, 12

$\xrightarrow[\text { FLOW }]{\text { FLO }}$

Const. Ref. 15, 16

Headwarks

Section 5

Controls Submittal

Screening System Control Panel MGD Water Reclamation Facility City of Jefferson, GA

Submittal

Customer:
Headworks Inc.
11000 Brittmoore Park Drive Houston, TX 77041
P.O. No. JEF070622-1

Date:
July 7, 2022

Screening System Control Panel

CONTINUOUS HINGE WITH 3-POINT LATCH, TYPE 4X

INDUSTRY STANDARDS

UL 508A Listed; Type 3R, 4, 4X, 12; File No. E61997 cUL Listed per CSA C22.2 No 94; Type 3R, 4, 4X, 12; File No. E61997
NEMA/EEMAC Type 3R, 4, 4X, 12, 13
IEC 60529, IP66
Meets NEMA Type $3 R X$ requirements

APPLICATION

These enclosures feature Hoffman's exclusive POWERGLIDE Handle with 3-point latching, ideal for indoor or outdoor applications that require corrosion protection, convenient access, and padlocking security.

SPECIFICATIONS

- 14 gauge Type 304 or 316L stainless steel bodies and doors
- Seams continuously welded and ground smooth
- Seamless foam-in-place gasket
- Rolled lip around three sides of door
- Internal 3-point latch and Type 316L stainless steel padlocking POWERGLIDE Handle
- Remove door by pulling stainless steel continuous hinge pin
- Data pocket is high-impact thermoplastic
- Collar studs provided for mounting optional panels
- Exterior hardware on Type 316L stainless steel enclosures matches enclosure material
- Bonding provision on door; grounding stud on body

FINISH

Door, sides, top and bottom have smooth \#4 brushed finish. Handle is electropolished.

ACCESSORIES

Panels for Type 3R, 4, 4X, 12 and 13 Enclosures
Steel and Stainless Steel Window Kits
H2OMIT Vent Drains, Type 4X
H2OMIT Thermoelectric Dehumidifier

MODIFICATION AND CUSTOMIZATION

Hoffman excels at modifying and customizing products to your specifications. Contact your local Hoffman sales office or distributor for complete information.

BULLETIN: A4SW3

Standard Product

						Panel Size	
		Stainless	Steel	Conductive	Stainless	D x E	
Catalog Number	AxBxC in./mm	Steel Type	Panel	Panel	Steel Panel	in./mm	Pocket
A24H2006SSLP3PT	$\begin{aligned} & 24.00 \times 20.00 \times 6.00 \\ & 610 \times 508 \times 152 \end{aligned}$	304	A24P20	A24P20G	A24P20SS6	$\begin{aligned} & 21.00 \times 17.00 \\ & 533 \times 432 \end{aligned}$	Small
A24H2006SS6LP3PT	$\begin{aligned} & 24.00 \times 20.00 \times 6.00 \\ & 610 \times 508 \times 152 \end{aligned}$	316L	A24P20	A24P20G	A24P20SS6	$\begin{aligned} & 21.00 \times 17.00 \\ & 533 \times 432 \end{aligned}$	Small
A24H2008SSLP3PT	$\begin{aligned} & 24.00 \times 20.00 \times 8.00 \\ & 610 \times 508 \times 203 \end{aligned}$	304	A24P20	A24P20G	A24P20SS6	$\begin{aligned} & 21.00 \times 17.00 \\ & 533 \times 432 \end{aligned}$	Small
A24H2008SS6LP3PT	$\begin{aligned} & 24.00 \times 20.00 \times 8.00 \\ & 610 \times 508 \times 203 \end{aligned}$	316L	A24P20	A24P20G	A24P20SS6	$\begin{aligned} & 21.00 \times 17.00 \\ & 533 \times 432 \end{aligned}$	Small
A24H2408SSLP3PT	$\begin{aligned} & 24.00 \times 24.00 \times 8.00 \\ & 610 \times 610 \times 203 \end{aligned}$	304	A24P24	A24P24G	A24P24SS6	$\begin{aligned} & 21.00 \times 21.00 \\ & 533 \times 533 \end{aligned}$	Small
A24H2408SS6LP3PT	$\begin{aligned} & 24.00 \times 24.00 \times 8.00 \\ & 610 \times 610 \times 203 \end{aligned}$	316L	A24P24	A24P24G	A24P24SS6	$\begin{aligned} & 21.00 \times 21.00 \\ & 533 \times 533 \end{aligned}$	Small
A30H2408SSLP3PT	$\begin{aligned} & 30.00 \times 24.00 \times 8.00 \\ & 762 \times 610 \times 203 \end{aligned}$	304	A30P24	A30P24G	A30P24SS6	$\begin{aligned} & 27.00 \times 21.00 \\ & 686 \times 533 \end{aligned}$	Large
A30H2408SS6LP3PT	$\begin{aligned} & 30.00 \times 24.00 \times 8.00 \\ & 762 \times 610 \times 203 \end{aligned}$	316L	A30P24	A30P24G	A30P24SS6	$\begin{aligned} & 27.00 \times 21.00 \\ & 686 \times 533 \end{aligned}$	Large
A30H3008SSLP3PT	$\begin{aligned} & 30.00 \times 30.00 \times 8.00 \\ & 762 \times 762 \times 203 \end{aligned}$	304	A30P30	A30P30G	A30P30SS6	$\begin{aligned} & 27.00 \times 27.00 \\ & 686 \times 686 \end{aligned}$	Large
A30H3008SS6LP3PT	$\begin{aligned} & 30.00 \times 30.00 \times 8.00 \\ & 762 \times 762 \times 203 \end{aligned}$	316L	A30P30	A30P30G	A30P30SS6	$\begin{aligned} & 27.00 \times 27.00 \\ & 686 \times 686 \end{aligned}$	Large
A36H2408SSLP3PT	$\begin{aligned} & 36.00 \times 24.00 \times 8.00 \\ & 914 \times 610 \times 203 \end{aligned}$	304	A36P24	A36P24G	A36P24SS6	$\begin{aligned} & 33.00 \times 21.00 \\ & 838 \times 533 \end{aligned}$	Large
A36H2408SS6LP3PT	$\begin{aligned} & 36.00 \times 24.00 \times 8.00 \\ & 914 \times 610 \times 203 \end{aligned}$	316L	A36P24	A36P24G	A36P24SS6	$\begin{aligned} & 33.00 \times 21.00 \\ & 838 \times 533 \end{aligned}$	Large
A36H3008SSLP3PT	$\begin{aligned} & 36.00 \times 30.00 \times 8.00 \\ & 914 \times 762 \times 203 \end{aligned}$	304	A36P30	A36P30G	A36P30SS6	$\begin{aligned} & 33.00 \times 27.00 \\ & 838 \times 686 \end{aligned}$	Large
A36H3008SS6LP3PT	$\begin{aligned} & 36.00 \times 30.00 \times 8.00 \\ & 914 \times 762 \times 203 \end{aligned}$	316L	A36P30	A36P30G	A36P30SS6	$\begin{aligned} & 33.00 \times 27.00 \\ & 838 \times 686 \end{aligned}$	Large
A48H3608SSLP3PT	$\begin{aligned} & 48.00 \times 36.00 \times 8.00 \\ & 1219 \times 914 \times 203 \end{aligned}$	304	A48P36	A48P36G	A48P36SS6	$\begin{aligned} & 45.00 \times 33.00 \\ & 1143 \times 838 \end{aligned}$	Large
A48H3608SS6LP3PT	$\begin{aligned} & 48.00 \times 36.00 \times 8.00 \\ & 1219 \times 914 \times 203 \end{aligned}$	316L	A48P36	A48P36G	A48P36SS6	$\begin{aligned} & 45.00 \times 33.00 \\ & 1143 \times 838 \end{aligned}$	Large
A24H2010SSLP3PT	$\begin{aligned} & 24.00 \times 20.00 \times 10.00 \\ & 610 \times 508 \times 254 \end{aligned}$	304	A24P20	A24P20G	A24P20SS6	$\begin{aligned} & 21.00 \times 17.00 \\ & 533 \times 432 \end{aligned}$	Small

Purchase panels separately. Optional stainless steel, composite and aluminum panels are available for most sizes.

The PowerPact Advantage

- Proven Performance: Industry-leading circuit breaker innovation and protection for heavy-duty commercial and industrial applications.
- Smart: Integrated metering options provide a cost-effective solution to reduce energy consumption, optimize energy costs, and improve energy availablility for your facilities.
- Flexible: Full range of thermal-magnetic and electronic trip molded case circuit breakers from 15 to 3000 A , delivering the ratings, configurations, and operators for your unique applications.
- Simple: Common catalog numbers, standardized ratings, and a full range of fieldinstallable accessories make product selection, installation and maintenance easier than ever.
- Common Design Features: Mounting holes, door trim, and handle accessories

Table 7.46: PowerPact Interrupting Ratings

Voltage	Interrupting Rating						
	\mathbf{B}	\mathbf{D}	\mathbf{G}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{R}
240 Vac	10 kA	25 kA	65 kA	100 kA	$65 \mathrm{kA}[1]$	125 kA	200 kA
480 Vac	-	18 kA	35 kA	65 kA	$65 \mathrm{kA}[2]$	100 kA	200 kA
600 Vac	-	14 kA	18 kA	25 kA	$65 \mathrm{kA}[2]$	$50 \mathrm{kA}[3]$	100 kA

Table 7.47: Common Catalog Numbering System

B-Frame
Thermal-Magnetic Trip Unit

PowerPact B-Frame Molded Case Circuit Breakers (125 A)
PowerPact B-frame circuit breakers provides economical thermal-magnetic circuit protection in a compact size.

- Fixed 15-125 A thermal-magnetic protection up to $600 \mathrm{Y} / 347 \mathrm{Vac}$ and 250 Vdc
- 1- to 4-pole unit mount construction; 1 - to 3 -pole I-Line construction
- UL listed interrupting ratings from 18 kA to 65 kA at 480 Vac
- EverLink lugs, a cable connection method that helps maintain low resistance connections
- UL, CSA, NOM, IEC, CCC certified and CE marked for global acceptance

With EverLink Lug Technology
Table 7.48: PowerPact B-Frame 125 A Thermal-Magnetic Circuit Breakers ($600 \mathrm{Y} / 347$ Vac) with EverLink Lugs

Current Rating ${ }_{40}$ @	Interrupting Rating													
	D				G				J				K	
	1 Pole 347 Vac 125 Vdc	$\begin{gathered} 2 \text { Pole } \\ 600 \mathrm{Y} / 347 \\ \text { Vac } \\ 250 \mathrm{Vdc} \\ \hline \end{gathered}$	$\begin{gathered} 3 \text { Pole } \\ 600 \mathrm{Y} / 347 \\ \text { Vac } \\ \angle 00 \mathrm{Vac} \\ \hline \end{gathered}$	4 Pole 600Y/347 Vac 250 Vdc	1 Pole 347 Vac 125 Vdc	$\begin{gathered} 2 \text { Pole } \\ 600 \mathrm{Y} / 347 \\ \text { Vac } \\ 250 \mathrm{Vdc} \\ \hline \end{gathered}$	$\begin{gathered} 3 \text { Pole } \\ 600 \mathrm{Y} / 347 \\ \text { Vac } \\ 250 \mathrm{Vdc} \\ \hline \end{gathered}$	$\begin{gathered} 4 \text { Pole } \\ 600 \mathrm{Y} / 347 \\ \mathrm{Vac} \\ 250 \mathrm{Vdc} \\ \hline \end{gathered}$	1 Pole 347 Vac 125 Vdc	$\begin{gathered} 2 \text { Pole } \\ 600 \mathrm{Y} / 347 \\ \mathrm{Vac} \\ 250 \mathrm{Vdc} \\ \hline \end{gathered}$	3 Pole 600Y/347 Vac 250 Vdc	$\begin{gathered} 4 \text { Pole } \\ 600 \mathrm{Y} / 347 \\ \mathrm{Vac} \\ 250 \mathrm{Vdc} \\ \hline \end{gathered}$	1 Pole 347 Vac	$\begin{gathered} 2 \text { Pole } \\ 600 \mathrm{Y} / 347 \\ \text { Vac } \end{gathered}$
15 A	BDL16015	BDL26015	BDL36015	DL46015	BGL16015	BGL26015	BGL36015	BGL46015	BJL16015	BJL26015	BJL36015	BJL46015	BKL16015	BKL26015
20 A	BDL16020	BDL26020	BDL36020	SDL46020	BGL16020	BGL26020	BGL36020	BGL46020	BJL16020	BJL26020	BJL36020	BJL46020	BKL16020	BKL26020
25 A	BDL16025	BDL26025	BTterozs	BDL46025	BGL16025	BGL26025	BGL36025	BGL46025	BJL16025	BJL26025	BJL36025	BJL46025	BKL16025	BKL26025
30 A	BDL16030	BDL26030	BDL36030	BDL46030	BGL16030	BGL26030	BGL36030	BGL46030	BJL16030	BJL26030	BJL36030	BJL46030	BKL16030	BKL26030
35 A	BDL16035	BDL26035	BDL36035	BDL46035	BGL16035	BGL26035	BGL36035	BGL46035	BJL16035	BJL26035	BJL36035	BJL46035	-	-
40 A	BDL16040	BDL26040	BDL36040	BDL46040	BGL16040	BGL26040	BGL36040	BGL46040	BJL16040	BJL26040	BJL36040	BJL46040	-	-
45 A	BDL16045	BDL16045	BDL36045	BDL46045	BGL16045	BGL26045	BGL36045	BGL46045	BJL16045	BJL26045	BJL36045	BJL46045	-	-
50 A	BDL16050	BDL26050	BDL36050	BDL46050	BGL16050	BGL26050	BGL36050	BGL46050	BJL16050	BJL26050	BJL36050	BJL46050	-	-
60 A	BDL16060	BDL26060	BDL36060	BDL46060	BGL16060	BGL26060	BGL36060	BGL46060	BJL16060	BJL26060	BJL36060	BJL46060	-	-
70 A	BDL16070	BDL26070	BDL36070	BDL46070	BGL16070	BGL26070	BGL36070	BGL46070	BJL16070	BJL26070	BJL36070	BJL46070	-	-
80 A	BDL16080	BDL26080	BDL36080	BDL46080	BGL16080	BGL26080	BGL36080	BGL46080	BJL16080	BJL26080	BJL36080	BJL46080	-	-
90 A	BDL16090	BDL26090	BDL36090	BDL46090	BGL16090	BGL26090	BGL36090	BGL46090	BJL16090	BJL26090	BJL36090	BJL46090	-	-
100 A	BDL16100	BDL26100	BDL36100	BDL46100	BGL16100	BGL26100	BGL36100	BGL46100	BJL16100	BJL26100	BJL36100	BJL46100	-	-
110 A	BDL16110	BDL26110	BDL36110	BDL46110	BGL16110	BGL26110	BGL36110	BGL46110	BJL16110	BJL26110	BJL36110	BJL46110	-	-
125 A	BDL16125	BDL26125	BDL36125	BDL46125	BGL16125	BGL26125	BGL36125	BGL46125	BJL16125	BJL26125	BJL36125	BJL46125	-	-

Table 7.49: B-Frame Termination Options

Termination Letter	
A = I-Line (See Section 9, Panelboards)	BDL36100 For factory-installed termination, place termination letter in the third block of the circuit breaker catalog number.
$\mathrm{F}=$ No Lugs (includes terminal nut kit on both ends)	
L =EverLink Lugs both ends	
$\mathrm{M}=$ Lugs ON end Terminal Nut Kit OFF end	
$\mathrm{P}=$ Lugs OFF end Terminal Nut Kit ON end	

Table 7.51: B-Frame Lug Options

Lug Option Suffix

No Suffix = EverLink Lugs both ends LU = EverLink Lug with Control Wire Terminal ON end; EverLink Lug OFF end LV = EverLink Lug ON end; EverLink Lug with Control Wire Terminal OFF end with Control Wire Terminal OFF end LW $=$ EverLink Lug
Terminal both ends
LC = Copper Mechanical Lugs both ends LH = Aluminum Mechanical Lugs both ends

BDL36100LU For factory-installed lug option, place suffix after the amperage in the circuit breake catalog number.

Table 7.50: B-Frame Interrupting Ratings

Voltage	Interrupting Rating			
	\mathbf{D}	\mathbf{G}	J	\mathbf{K}
240 Vac	25 kA	65 kA	100 kA	100 kA
$480 \mathrm{Y} / 277 \mathrm{Vac}$	18 kA	35 kA	65 kA	65 kA
480 Vac	18 kA	35 kA	65 kA	65 kA
$600 \mathrm{Y} / 347 \mathrm{Vac}$	14 kA	18 kA	25 kA	65 kA
125 Vdc	10 kA	20 kA	50 kA	-
250 Vdc	10 kA	20 kA	50 kA	-

Table 7.52: PowerPact B-Frame 125 A Magnetic Trip Values

Current Rating @ $40^{\circ} \mathrm{C}$	Fixed AC Magnetic Trip	
	400 A	Trip
20 A	400 A	600 A
25 A	480 A	600 A
30 A	480 A	720 A
35 A	480 A	720 A
40 A	480 A	720 A
45 A	480 A	720 A
50 A	480 A	720 A
60 A	640 A	720 A
70 A	800 A	960 A
80 A	800 A	1200 A
90 A	1000 A	1200 A
100 A	1000 A	1500 A
110 A	1000 A	1500 A
125 A	1000 A	1500 A

Accessories see page 7-50
Optional Lugs see page 7-55
Dimensions see page 7-83

9421 Type L Circuit Breaker Operating Mechanism

Type L Circuit Breaker Mechanisms
Type L door-mounted, variable depth operating mechanisms feature heavy duty, all metal construction with trip indication. All mechanisms can be padlocked in the Off position when the enclosure door is open. Further, the handle assemblies can be locked Off with up to three padlocks, which also locks the enclosure when the door is closed. (The 3 in. handle accepts one padlock.) Complete kits are rated for NEMA 1, 3R, and 12 enclosures. They include a handle assembly, operating mechanism, and shaft assembly.

Table 8.89: Complete Kits

Complete Kit Does Not Include Circuit Breaker			Includes Operating Mechanism and Handle					
Use With			Standard 6 in. Handle				Short 3 in. Handle Long Shaft Kit	
			Standard Shaft Kit		Long Shaft Kit			
Circuit Breaker or Interrupter Type	$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Poles } \end{gathered}$	Frame Size (A)	Cat. No.	Mounting Depth [1]	Cat. No.	Mounting Depth [1]	Cat. No.	Mounting Depth [1]
PowerPact ${ }^{\text {mim }} \mathrm{B}$	2-3	125	9421LB1	$\begin{aligned} & 5.50- \\ & 10.75 \end{aligned}$	9421LB4	$\begin{aligned} & 5.50- \\ & 21.38 \end{aligned}$	9421LB3	$\begin{aligned} & 5.50- \\ & 21.38 \\ & \hline \end{aligned}$
PowerPact H and J	2-3	250	9421LJ1	$\begin{aligned} & 5.50- \\ & 10.75 \\ & \hline \end{aligned}$	9421LJ4	$\begin{aligned} & 5.50- \\ & 21.38 \\ & \hline \end{aligned}$	9421LJ3	$\begin{aligned} & 5.50- \\ & 21.38 \\ & \hline \end{aligned}$
PowerPact L	2-3	600	9421LD1	$\begin{aligned} & 7.25- \\ & 12.06 \\ & \hline \end{aligned}$	9421LD4	$\begin{aligned} & 7.25- \\ & 22.63 \\ & \hline \end{aligned}$	3 in. handles are not recommended for use with these circuit breakers.	
PowerPact M and P [2]	3	1200	$\begin{gathered} \hline 9421 \mathrm{LW} 1 \\ {[3]} \\ \hline \end{gathered}$	$\begin{aligned} & 9.00- \\ & 12.50 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 9421 \mathrm{LW} 4 \\ {[3]} \\ \hline \end{gathered}$	$\begin{aligned} & 9.00- \\ & 23.50 \end{aligned}$		

Table 8.90: Component Parts

Table 8.91: NEMA 4 and 4X Handle Assemblies

Use With			Standard Handle Assemblies		Special 3 in. Version	
Circuit Breaker or	No. of	Frame	NEMA 1, 3R, 4, 12 (Painted)	NEMA 1, 3R, 4, 4X, 12 (Chrome Plated)	$\begin{gathered} \text { NEMA 1, 3R, 4, } 12 \\ \text { (Painted) } \\ \hline \end{gathered}$	NEMA 1, 3R, 4, 4X, 12 (Chrome Plated)
			Cat. No.	Cat. No.	Cat. No.	C-1.:
PowerPact B	2-3	125	9421LH46	9421LC46	9421LH43	9421LC43)
PowerPact H and J; NSF	2-3	250	9421LH46	9421LC46	9421LH43	94211 cac
PowerPact D and L	2-3	600	9421LH46	9421 LC 46	3 in. handles are not recommended for use with these circuit breakers.	
PowerPact M and P	3	1200	9421 LHP48	9421LCP48		

Table 8.92: Auxiliary and Alarm Switches for PowerPact ${ }^{\text {TM }}$ Circuit Breakers

Description	B-Frame	H- and J-Frame	D- and L-Frame	D- and L-Frame
1 Auxiliary Switch 1a 1b	LV26950	S29450	S29450	S29450
2 Auxiliary Switch 2a 2b	-	$2 \times$ S29450	$2 \times$ S29450	$2 \times$ S29450
3 Auxiliary Switch 3a 3b	-	-	$3 \times$ S29450	$3 \times$ S29450

NOTE: The location of the accessory in the circuit breaker determines its function.

Crimp lugs or PDC connectors extension " A " past end of circuit

Class 612 / Refer to Catalog 0612CT0101

Power Distribution Connectors
Power distribution connectors (PDCs) can be used for multiple load one circuit breaker in place of standard distribution block to save space and time.
The connectors are attached to circuit breaker terminals equipped with separately provided terminal nut connectors. [29]
Applications:

- For use on load end of circuit breaker only
- For use in UL 508 Industrial Control applications
- For use in UL 1995/CSA C22.2 No. 236 heating and cooling equipment
- For copper wire only

Table 7.108: Power Distribution Connectors for B-Frame, H-Frame, J-Frame and LFrame Circuit Breakers [30]

Use with Circuit Breaker Type	Ampere Rating	(Wires Per Terminal) Wire Range	Dimension A (in.)	Cat. No.	Qty. Per Kit	Kit Contents
$\begin{aligned} & \mathrm{BD}, \mathrm{BG}, \\ & \mathrm{BJ} \\ & \hline \end{aligned}$	125 A	(3) 14-2 AWG	1.2	PDC3RD2	3	Mounting hardware, lugs
	125 A	(6) 14-6 AWG	1	PDC6BD6	3	
$\begin{aligned} & \hline \mathrm{HD}, \mathrm{HG}, \\ & \mathrm{HJ}, \mathrm{HL} \\ & \text { [31] } \\ & \hline \end{aligned}$	15-150 A	(6) 14-6 AWG Cu	1.0	C0400	3	Mounting hardware, lugs, special purpose label and instructions
	15-150 A	(3) 14-2 AWG Cu	1.2	PDC3HD2	3	
$\begin{aligned} & \text { JD, JG, } \\ & \text { JJ, JL } \\ & \text { [31] } \end{aligned}$	$150-250$	(6) 14-4 AWG Cu	1.0	PDC6JD4	3	
	$\begin{gathered} 150-250 \\ \text { A } \\ \hline \end{gathered}$	(2) 14-1 AWG and (1) $3-2 / 0$ AWG Cu	1.5	PDC3JD20	3	
LD, LG, LJ, LL [32]	$\begin{gathered} 150-600 \\ \text { A } \end{gathered}$	(3) 14-1 AWG and (2) $3-2 / 0$ AWG	1.28	PDC5DG20L3	3	Mounting hardware, lugs, special purpose label, Medium Terminal Shield and instructions
	$\begin{gathered} 150-600 \\ \text { A } \end{gathered}$	(12) 14-4 AWG	1.31	PDC12DG4L3	3	Mounting hardware, lugs, special purpose label, Long Terminal Shield and instructions

Table 7.109: Power Distribution Connectors for M-Frame and P-Frame Circuit Breakers [30]

	Ampere Rating	(Wires Per Terminal) Wire Range	Cat. No.	Qty Per Kit	Kit Contents
Use for multiple load connections on one circuit breaker in place of standard distribution block to save space and time. - Use on load end of circuit breaker only - Use in UL508 Industrial Control applications only. - Use in UL1995/CSA C22.2 No. 236 heating and cooling equipment. - For Cu wire only.	$\begin{aligned} & 250- \\ & 1200 \mathrm{~A} \end{aligned}$	(6) $12-2 / 0$ AWG Cu	PDC6P20	3	Mounting hardware, lugs, special purpose label and instructions
		(6) $12-2 / 0$ AWG Cu	PDC6P204	4	Mounting hardware, lugs, special purpose label and instructions
	$\begin{aligned} & 250- \\ & 1200 \mathrm{~A} \end{aligned}$	(12) 10-4 AWG Cu	PDC12P4	3	Mounting hardware, lugs, special purpose label and instructions
			PDC12P44	4	Mounting hardware, lugs, special purpose label and instructions

REPORT

7L Series

 New LED Panel Light

Connector included

Finder's new LED light for electrical panels - with magnetic mount

- "Two in One" mount - direct magnetic mount or through a screw-mounted metallic bracket
- Brightness levels: 600 or 1200 lumens
- Versions with: direct switching, ON/OFF switch, or motion detector
- Power supply - Multi-voltage: (12 ... 48)V AC/DC and (110 ... 240)V AC/DC
- New design

7L SERIES
 New LED Panel Light

©inaer

Type 7L. 43 (600 lumens)
Type 7L. 46 (1200 lumens)

- Direct magnetic mount or through a screw-mounted metallic bracket
- Power supply: (12 ... 48)V AC/DC and (110 ... 240)V AC/DC
- Nominal power consumption: 6 W (600 Im), 9 W (1200 Im)
- Radiation angle: 120°
- Light color: 5,000 K
- Protection category: IP20

Switching without ON/OFF switch or motion detector

Switching via ON/OFF switch

Switching via motion detector

Magnetic mount directly to metallic panel

Magnetic mount via screw-mounted metallic bracket

Quick and simple wiring system via push-in connectors for the connection to a single unit, or via plug-in connectors for the connection to a single or multiple units.

Part Number	Lumen	Supply voltage	Switching	Connections
7L.43.0.024.0100	600	(12 ... 48)V AC/DC	Without ON/OFF switch and PIR - motion detector	Push-in connection
7L.43.0.024.0200	600	(12 ... 48)V AC/DC	Without ON/OFF switch and PIR - motion detector	Plug-in connection
7L.43.0.230.0100	600	(110 ... 240)V AC/DC	Without ON/OFF switch and PIR - motion detector	Push-in connection
7L.43.0.230.0200	600	(110 ... 240)V AC/DC	Without ON/OFF switch and PIR - motion detector	Plug-in connection
7L.43.0.024.1100	600	(12... 48)V AC/DC	ON/OFF switch	Push-in connection
7L.43.0.024.1200	600	(12... 48)V AC/DC	ON/OFF switch	Plug-in connection
7L.43.0.024.2100	600	(12 ... 48)V AC/DC	PIR - motion detector	Push-in connection
7L.43.0.024.2200	600	(12 ... 48)V AC/DC	PIR - motion detector	Plug-in connection
7L.43.0.230.1100	600	(110 ... 240)V AC/DC	ON/OFF switch	Push-in connection
7L.43.0.230.1200	600	(110 ... 240)V AC/DC	ON/OFF switch	Plug-in connection
7L.43.0.230.2100	600	(110 ... 240)V AC/DC	PIR - motion detector	Push-in connection
7L.43.0.230.2200	600	(110 ... 240)V AC/DC	PIR - motion detector	Plug-in connection
7L.46.0.024.1100	1200	(12 ... 48)V AC/DC	ON/OFF switch	Push-in connection
7L.46.0.024.1200	1200	(12 ... 48)V AC/DC	ON/OFF switch	Plug-in connection
7L.46.0.024.2100	1200	(12... 48)V AC/DC	PIR - motion detector	Push-in connection
7L.46.0.024.2200	1200	(12... 48)V AC/DC	PIR - motion detector	Plug-in connection
7L.46.0.230.1100	1200	(110 ... 240)V AC/DC	ON/OFF switch	Push-in connection
21.040.0.250.1200	1200	(110 ... 240)V AC/DC	ON/OFF switch	Plug-in connection
	200	(110 ... 240)V AC/DC	PIR - motion detector	Push-in connection
7L.46.0.230.2200	1200	(110 ... 240)V AC/DC	PIR - motion detector	Plug-in connection
07L. 12	-	-	Male connector	-

TECHNICAL CATALOG

Low voltage AC drives

ABB general purpose drives
ACS580, 1 to 350 hp

Technical data

Mains connection	
Voltage and power range	3-phase, $\mathrm{U}_{\mathrm{N}} 380$ to $480 \mathrm{~V},+10 \% /-15 \%$ ACS580-01: 1 to 350 hp (0.75 to 250 kW)
Frequency	from 48 to 63 Hz
Power factor	$\cos \phi=0.98$
Efficiency (at nominal power)	98\%
Motor connection	
Voltage	0 to U_{N}, 3-phase
Frequency	0 to 500 Hz
Motor control	Scalar and vector control
Torque control	Torque step rise time: $<10 \mathrm{~ms}$ with nominal torque Non-linearity: $\pm 5 \%$ with nominal torque
Speed control	Static accuracy: 20\% of motor nominal slip Dynamic accuracy: 1% seconds with 100% torque step
Product compliance	
CE Low Voltage Directiv Machinery Directive EMC Directive 2004/ RoHS directive 2011/ Quality assurance sy ISO 14001 Waste electrical and (WEEE) 2002/96/EC RoHS directive 2011 UL, EAC, RCM, UL, cUL	6/95/EC, EN 61800-5-1: 2007 /42/EC, EN 61800-5-2: 2007 EC, EN 61800-3: 2004 + A1: 2012 U ISO 9001 and Environmental system ronic equipment directive

EMC according to EN 61800-3: 2004 + A1: 2012	
Frames R1 to R9 with built-in C2 category filter as standard	
Environmental limits	
Ambient temperature	
Transport	-40 to $+70^{\circ} \mathrm{C}$
Storage	-40 to $+70^{\circ} \mathrm{C}$
Operation area	ACS580-01: -15 to $+50^{\circ} \mathrm{C}$. No frost allowed R1 to R 9 from +40 to $+50^{\circ} \mathrm{C}$ with derating
Cooling method Air-cooled	Dry clean air
Altitude 0 to $1,000 \mathrm{~m}$ 1,000 to 4,000 m	Without derating With derating of $1 \% / 100 \mathrm{~m}$
Relative humidity	5 to 95\%, no condensation allowed
Degree of protection	ACS580-01: UL Type 1 (IP21) as standard. UL Type 12 (IP55) as option (frames R1 to R9)
Functional safety	Safe torque off (STO according EN 61800-5-2) IEC 61508 ed2: SIL 3. IEC 61511: SIL 3. IEC 62061: SIL CL 3. EN ISO 13849-1: PL e
Contamination levels	No conductive dust allowed
Storage	IEC 60721-3-1. Class 1C2 (chemical gases). Class 1S2 (solid particles)*
Operation	IEC 60721-3-3. Class 3C2 (chemical gases). Class 3S2 (solid particles)*
Transportation	IEC 60721-3-2. Class 2C2 (chemical gases) Class 2S2 (solid particles)*

$\mathrm{S}=$ mechanically active substances

Dimensions

ACS580-01 UL Type 1 (IP21)										
	Height				Width		Depth		Weight	
Erames	$\begin{aligned} & \mathrm{H} 1^{*} \\ & \text { in } \end{aligned}$	mm	$\begin{aligned} & \mathrm{H} 2^{* *} \\ & \text { in } \end{aligned}$	mm	in	mm	in	mm	lb	kg
R1	14.7	373	13	331	4.9	125	8.8	223	10.6	4.8
	18.6	473	17	432	4.9	125	9	229	14.3	6.5
R3	19.3	490	---	---	8	203	9	229	26	11.8
R4	22.9	580	---	---	8	203	10.1	257	41.9	19
R5	28.8	732	23.5	596	8	203	11.6	295	62.4	28.3
R6	28.6	727	21.6	548	9.9	252	14.5	369	93.5	42.4
R7	34.6	880	23.6	600	11.2	284	14.6	370	119.1	54
R8	38	965	26.8	680	11.8	300	15.5	393	152.2	69
R9	37.6	955	26.8	680	15	380	16.5	418	213.9	97

* Front height of the drive with conduit box
** Front height of the drive without conduit box

ACS580-01 UL Type $\mathbf{1 2}$ (IP55) (option + B056)								
	Height*		Width		Depth		Weight	
Frames	in	(mm)	in	$\mathbf{m m}$	in	mm	lb	kg
R1	15.9	403	5.6	128	9.2	233	11.25	5.1
R2	19.8	503	5.1	128	9.4	239	14.8	6.7
R3	19.3	490	8.1	206	9.3	237	28.7	13
R4	25	636	8	203	10.4	265	44.1	20
R5	28.9	732	8	203	12.6	320	64	29
R6	28.6	726	9.9	252	15	380	94.9	43
R7	34.7	880	11.2	284	15	380	123.5	56
R8	38	965	11.8	300	17.8	452	169.8	77
R9	37.6	955	15	380	18.8	380	227.1	103

[^5]
Ratings, types and voltages

Wall-mounted drives, ACS580-01						
3 -phase, $U_{N}=440,460,480 \mathrm{~V}$						
Type code	Frame Size	Max. output current$I_{\max }(A)$	Light overload use		Heavy-duty use	
			$I_{\text {Ld }}(\mathrm{A})$	$P_{\text {Ld }}(\mathrm{hp})$	$I_{\text {Hd }}(\mathrm{A})$	$\boldsymbol{P}_{\mathrm{Hd}}(\mathrm{hp})$
ACS580-01-02A1-4	R1	2.9	2.1	1	1.6	0.75
ACS580-01-03A0-4	R1	3.8	3	1.5	2.1	1
ACS580-01-03A5-4	R1	5.4	3.5	2	3	1.5
ACS580-01-04A8-4	R1	6.1	4.8	3	3.4	2
ACS580-01-06A0-4	R1	7.2	6	3	4	3
ACS580-01-07A6-4	R1	8.6	7.6	5	4.8	3
ACS580-01-012A-4	R1	11.4	12	7.5	7.6	5
ACS580-01-014A-4	R2	19.8	14	10	11	7.5
ACS580-01-023A-4	R2	25.2	23	15	14	10
ACS580-01-027A-4	R3	37.8	27	20	21	15
ACS580-01-034A-4	R3	48.6	34	25	27	20
ACS580-01-044A-4	R3	61.2	44	30	34	25
ACS580-01-052A-4	R4	76	52	40	40	30
ACS580-01-065A-4	R4	104	65	50	52	40
ACS580-01-077A-4 ${ }^{\ddagger}$	R4	122	77	60	65	50
ACS580-01-078A-4	R5	122	77	60	65	50
ACS580-01-096A-4	R5	148	96	75	77	60
ACS580-01-124A-4	R6	178	124	100	96	75
ACS580-01-156A-4	R7	247	156	125	124	100
ACS580-01-180A-4	R7	287	180	150	156	125
ACS580-01-240A-4	R8	350	240	200	180	150
ACS580-01-260A-4	R8	418	260	200	240*	150
ACS580-01-302A-4 ${ }^{\ddagger}$	R8	TBD	302	250	260	200
ACS580-01-361A-4	R9	542	361	300	302	250
ACS580-01-414A-4	R9	542	414	350	361**	300
\# Coming soon						
Nominal ratings						
$I_{\text {N }} \quad$ Rate	Rated current available continuously without overloadability at $40^{\circ} \mathrm{C}$.					
$P_{\mathrm{N}} \quad$ Typi	Typical motor power in no-overload use.					
Maximum output current						
$I_{\text {max }} \quad$ Max	Maximum output current. Available for 2 seconds at start, then as long as allowed by drive temperature.					
Light-overload use						
$I_{\text {Ld }} \quad$ Con	Continuous current allowing $110 \% I_{\text {Ld }}$ for 1 minute every 10 minutes at $40^{\circ} \mathrm{C}$.					
$P_{\text {Ld }} \quad$ Typi	Typical motor power in light-overload use.					
Heavy-duty use						
$\begin{array}{ll} I_{\text {Hd }} & \text { Con } \\ & { }^{*} \mathrm{Co} \\ & { }^{* *} \mathrm{C} \end{array}$	Continuous current allowing $150 \% I_{\mathrm{Hd}}$ for 1 minute every 10 minutes at $40^{\circ} \mathrm{C}$. * Continuous current allowing $130 \% I_{\mathrm{Hd}}$ for 1 minute every 10 minutes at $40^{\circ} \mathrm{C}$. ${ }^{* *}$ Continuous current allowing $125 \% I_{\text {Hd }}$ for 1 minute every 10 minutes at $40^{\circ} \mathrm{C}$.					
$P_{\text {Hd }} \quad$ Typi	Typical motor power in heavy-duty use.					
The ratings apply for the frames R1 to R 9 up to $+40^{\circ} \mathrm{C}$ in enclosure class 21 . For derating at higher altitudes, temperatures, switching frequencies or enclosure classes, see the HW manuals, document codes: 3AXD50000018826 and 3AXD50000015497.						

Control panel options

01 Assistant control pane is included as standard.

02 Optional Bluetooth panel. USB connection as standard.

03 By using the CDPI-01 panel adapter, the assistant control panel is able to manage up to 32 drives.

Assistant control panel

 Set up the drive using the assistant control panel delivered as standard with all ACS580 drives. There is no need to know any drive parameters, as the control panel helps to set up the essential settings quickly and get the drive into action.- Drive setup with the primary settings menu including embedded assistants
- Process monitoring with one glance at the control panel's editable home view showing you the status of the drive and process
- Drive maintenance with the help function providing context-sensitive guidance and troubleshooting instructions
- Drive diagnostics under the diagnostics menu informing the user of the root cause.

Bluetooth panel

The optional Bluetooth panel enables connection with the Drivetune mobile app. The app is available for free on the Google Play and the Apple App store.

Some of the Drivetune features are: commissioning, troubleshooting, monitoring and controlling the drive. Drivetune also has full parameter access.

Control panel options

Assistant control panel ACS-AP-S is included as standard in the delivery. ACS-AP-S (+J 400) can be replaced by +J options below.

Option code	Description	Type designation
+J 400	Assistant control panel (+J400 option automatically included)	ACS-AP-S
$+\mathrm{J425}$	Industrial Assistant control panel*	ACS-AP-I
$+\mathrm{J429}$	Control panel with Bluetooth interface*	ACS-AP-W
$+\mathrm{J424}$	Blank control panel cover (no control panel delivered)	CDUM-01
3AXD50000004419	Panel bus adapter	
3AUA0000108878	Control panel mounting platform (flush mounted, requires also panel bus adapter on the drive)	DPMP-01
3AXD50000010763	Door mounting kit for the panel, surface mounted (for one drive, contains both DPMP-02 and CDPI-	DPMP-EXT

* Also compatible with ACS880 drives

Additional options

04 Cold configuration

 adapter CCA-0105 Remote
monitoring tool NETA-21
-
06 Drive composer PC tool

Safe configuration for unpowered drives

The CCA-01 cold configuration adapter provides a serial communication interface for unpowered ACS580 drives. With the adapter, safety isolation of both serial communication and control board power supply is possible. The power supply is taken from a PC USB port.

Remote monitoring

access worldwide
The NETA-21 remote monitoring tool gives easy access to the drive via the Internet or local Ethernet network. NETA-21 comes with a built-in web server. Compatible with standard web browsers, it ensures easy access to a web-based user interface. Through the web interface, the user can configure drive parameters, and monitor drive log data, load levels, runtime, energy consumption, I/O data and bearing temperatures of the motor connected to the drive.

PC tools

The Drive composer PC tool offers fast and harmonized setup, commissioning and monitoring for all-compatible drives. The free version of the tool provides start-up and maintenance capabilities and gathers all drive information, such as parameter loggers, faults, backups and lists, into a support diagnostics file. Drive composer pro provides additional features such as custom parameter windows, graphical control diagrams of the drive's configuration, and improved monitoring and diagnostics.

Ordering code	Description	Type designation
3AXD50000019865	Cold configurator adapter,	CCA-01
	packed kit	

\qquad
Remote monitoring option

Ordering code	Description	Type designation
3AUA00000094517	$2 \times$ panel bus interface	NETA-21
	$2 \times 32=$ max. 64 drives	
$2 \times$ Ethernet interface		
SD memory card		

Connectivity options

$\overline{07}$ ACS580 is compatible with many fieldbus protocols

08 Input/output extension modules

Fieldbus adapter modules The ACS580 general purpose drives are compatible with a wide range of fieldbus protocols. The drive comes with Modbus RTU fieldbus interface as standard. Fieldbus communication reduces wiring costs when compared to traditional hard-wired input/ output connections.

Option code	Fieldbus protocol	Adapter
+K451	DeviceNet ${ }^{\text {™ }}$	FDNA-01
+K454	PROFIBUS DP. DPVO/DPV1	FPBA-01
+K457	CANopen®	FCAN-01
+K458	Modbus RTU	FSCA-01
+K462	Controlnet	FCNA-01
+K469	EtherCAT®	FECA-01
+K470	POWERLINK	FEPL-02
+K473	EtherNet/IPTM, Modbus TCP, PROFINETIO	FENA-11
+K475	Two port EtherNet/IPTM, Modbus TCP, PROFINET IO	FENA-21

Input/output extension modules

Standard input and output can be extended by using optional analog and digital input/output extension modules. The modules are easily installed in the extension slots located on the drive.

I/O options

Option code	Description	Type designation
External 24 V AC and DC		
+L501	$2 \times \mathrm{RO}$ and $1 \times$ DO	CMOD-01
External 24 V and isolated		
+L523	+L523 PTC interface CMOD-02	CMOD-02
115/230 V digital input		
+L512	$6 \times$ DI and $2 \times$ RO	CHDI-01
ATEX certified PTC interface		
+L537	and external 24 V	CPTC-02

EMC - electromagnetic compatibility

Every ACS580 drive is equipped with a built-in filter to reduce high-frequency emissions. EMC product standard (EN 61800-3) category C2 is fulfilled in wallmounted drives.

EMC standards

The EMC product standard (EN 61800-3) covers the specific EMC requirements stated for drives (tested with motor and motor cable) within the EU. EMC standards such as EN 55011 or EN 61000-6-3/4 are applicable to industrial and domestic equipment and systems, including the components inside the drive. Drive units complying with the requirements of EN 61800-3 are compliant with comparable categories in EN 55011 and EN 61000-6-3/4 but not necessarily vice versa. EN 55011 and EN 61000-6-3/4 do not specify cable length or require a motor to be connected as a load. The emission limits are comparable to EMC standards according to the table below.

Domestic environments versus public low voltage networks
The first environment includes domestic premises. It also includes establishments directly connected without an intermediate transformer to a low voltage power supply network that supplies buildings used for domestic purposes. The second environment includes all establishments directly connected to public low voltage power supply networks.

| Comparison of EMC standards | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| EMC according to EN 61800-3 | EN 61800-3
 product
 standard | EN 55011. product family
 standard for industrial,
 scientific
 and medical (ISM)
 equipment | EN 61000-6-4, generic
 emission standard for
 industrial environments | EN 61000-6-3, generic
 emission standard for
 residential, commercial
 and light-industrial
 environment |
| $1^{\text {st }}$ environment, unrestricted distribution | Category C1 | Group 1. Class B | Not applicable | Applicable |
| $1^{\text {st }}$ environment, restricted distribution | Category C2 | Group 1. Class A | Applicable | Not applicable |
| $2^{\text {nd }}$ environment, unrestricted distribution | Category C3 | Group 2. Class A | Not applicable | Not applicable |
| $2^{\text {nd }}$ environment, restricted distribution | Category C4 | Not applicable | Not applicable | Not applicable |

EMC compliance and maximum cable length of ACS580-01/07 units*					
Type	Voltage	Frame sizes	$1^{\text {st }}$ environment, restricted distribution, C2, grounded network (TN)	$2^{\text {nd }}$ environment, unrestricted distribution, C3, grounded network (TN)	$2^{\text {nd }}$ environment, unrestricted distribution, C3, ungrounded network (IT)
ACS580-01	380-480 V	R1-R5	Standard device, cable length 100 m	Standard device, cable length 100 m	-
ACS580-01	380-480 V	R6-R9	Standard device, cable length 150 m	Standard device, cable lenght 150 m	-
* Motor cable 3AXD500000	3AXD500000015	ty up to 3	. See ACS580 hardware manuals 00045815 and 3AXD50000032622	* Motor cable operational functionality up to 300 m . See ACS580 hardware manuals	

Cooling and fuses

Cooling

ACS580 drives are fitted with variable-speed cooling air fans. The cooling air must be free from corrosive materials and not exceed the maximum ambient temperature of $40^{\circ} \mathrm{C}$ for frames R1 to R9 $\left(50^{\circ} \mathrm{C}\right.$ with derating). The speed-controlled fans cool the drive only when needed, which reduces overall noise level and energy consumption.

Fuse connections

Standard fuses can be used with ABB general purpose drives. For input fuses, see the table below.

Wall-mounted drives, ACS580-01

Cooling air flow and recommended input protection fuses for 380 to 415 V units										
Type designation	Frame size	Cooling Air Flow 380 to 480 V units					Reccomended UL Input Protection fuses			
		Heat dissipation*		Air flow		$\begin{aligned} & \text { Max. } \\ & \text { noise level** } \end{aligned}$	I_{N}	Voltage rating	Bussmann type***	UL class
		W	BTU/Hr	m3/h	ft3/hr	dBA	A	v		
ACS580-01-02A1-4	R1	45	155	34	20	55	15	600	JJS-15	T
ACS580-01-03A0-4	R1	55	187	34	20	55	15	600	JJS-15	T
ACS580-01-03A5-4	R1	66	224	34	20	55	15	600	JJS-15	T
ACS580-01-04A8-4	R1	84	288	34	20	55	15	600	JJS-15	T
ACSOOU-O1-OOAU-4	R1	106	362	50	29	55	15	600	JJS-15	T
ACS580-01-07A6-4	R1	133	454	50	29	55	15	600	JJS-15	T
ACS580-01-012A-4	R1	174	593	50	29	55	15	600	JJS-15	T
ACS580-01-014A-4	R2	228	777	128	75	66	30	600	JJS-30	T
ACS580-01-023A-4	R2	322	1100	128	75	66	30	600	JJS-30	T
ACS580-01-027A-4	R3	430	1469	179	105	70	40	600	JJS-40	T
ACS580-01-034A-4	R3	525	1791	179	105	70	50	600	JJS-50	T
ACS580-01-044A-4	R3	619	2114	179	105	70	60	600	JJS-60	T
ACS580-01-052A-4	R4	835	2852	134	79	69	80	600	JJS-80	T
ACS580-01-065A-4	R4	1024	3497	134	79	69	90	600	JJS-90	T
ACS580-01-077A-4 ${ }^{\ddagger}$	R4	1240	4235	139	82	63	110	600	JJS-110	T
ACS580-01-078A-4	R5	1240	4235	139	82	63	110	600	JJS-110	T
ACS580-01-096A-4	R5	1510	5157	139	82	63	150	600	JJS-150	T
ACS580-01-124A-4	R6	1476	5041	435	256	67	200	600	JJS-200	T
ACS580-01-156A-4	R7	1976	6748	450	265	67	225	600	JJS-225	T
ACS580-01-180A-4	R7	2346	8012	450	265	67	300	600	JJS-300	T
ACS580-01-240A-4	R8	3336	11393	550	324	65	350	600	JJS-350	T
ACS580-01-260A-4	R8	3936	13422	550	324	65	400	600	JJS-400	T
ACS580-01-302A-4 ${ }^{\text {\# }}$	R8	4836	16516	1150	677	68	500	600	JJS-500	T
ACS580-01-361A-4	R9	4836	16516	1150	677	68	500	600	JJS-500	T
ACS580-01-414A-4	R9	6036	20614	1150	677	68	600	600	JJS-600	T

[^6]
dv/dt filters

dv/dt filtering suppresses inverter output voltage spikes and rapid voltage changes that stress motor insulation. Additionally, dv/dt filtering reduces capacitive leakage currents and high-frequency emissions from the motor cable as well as highfrequency losses and bearing currents in the motor.

The need for $\mathrm{dv} / \mathrm{dt}$ filtering depends on the motor insulation. For information on the construction of the motor insulation, consult the manufacturer. More information on the dv/dt filters can be found in the ACS580 hardware manual.

External dv/dt filter for ACS580-01

	du/dt filter type *3 filters included, dimensions apply to one filter.		
ACS580 480 V	Unprotected IP00	Protected to IP22	Protected to IP54
ACS580-01-02A1-4	V1K4A00	V1K4A01	V1K4A03
ACS580-01-03A0-4	V1K4A00	V1K4A01	V1K4A03
ACS580-01-03A5-4	V1K6A00	V1K6A01	V1K6A03
ACS580-01-04A8-4	V1K6A00	V1K6A01	V1K6A03
ACS580-01-06A0-4	V1K8A00	V1K8A01	V1K8A03
ACS580-01-07A6-4	V1K12A00	V1K12A01	V1K12A03
ACS580-01-012A-4	V1K18A00	V1K18A01	V1K18A03
ACS580-01-014A-4	V1K25A00	V1K25A01	V1K25A03
ACS580-01-023A-4	V1K27A00	V1K27A01	V1K27A03
ACS580-01-027A-4	V1K35A00	V1K35A01	V1K35A03
ACS580-01-034A-4	V1K45A00	V1K45A01	V1K45A03
ACS580-01-044A-4	V1K55A00	V1K55A01	V1K55A03
ACS580-01-052A-4	V1K80A00	V1K80A01	V1K80A03
ACS580-01-065A-4	V1K80A00	V1K80A01	V1K80A03
ACS580-01-077A-4	V1K110A00	V1K110A01	V1K110A03
ACS580-01-078A-4	V1K110A00	V1K110A01	V1K110A03
ACS580-01-096A-4	V1K130A00	V1K130A01	V1K130A03
ACS580-01-124A-4	V1K160A00	V1K160A01	V1K160A03
ACS580-01-156A-4	V1K200A00	V1K200A01	V1K200A03
ACS580-01-180A-4	V1K250A00	V1K250A01	V1K250A03
ACS580-01-240A-4	V1K305A00	V1K305A01	V1K305A03
ACS580-01-260A-4	V1K305A00	V1K305A01	V1K305A03
ACS580-01-302A-4	V1K362A00	V1K362A01	V1K362A03
ACS580-01-361A-4	V1K362A00	V1K362A01	V1K362A03
ACS580-01-414A-4	V1K420A00	V1K420A01	V1K420A03
V03			

[^7]| Dimensions and weights of the dv/dt filters | | | | |
| :--- | :--- | :--- | :--- | :--- |

JJS Limitron" ${ }^{\text {™ }}$ 600Vac, l-800A, fast-acting Class T fuses

Catalog Symbol:

- JJS-(amp)

Description:

Eaton's Bussmann ${ }^{\text {TM }}$ series Limitron ${ }^{\text {TM }}$ advanced protection Class T current-limiting, fast-acting fuses.

Specifications:

Ratings

- Volts - 600 Vac
- Amps - 1-800 A
- IR - 200 kA Vac RMS Sym.

Agency Information

- UL® Listed, Std. 248-15, Class T, Guide JDDZ, File E4273
- CSA ${ }^{\oplus}$ Certified, C22.2 No. 248.15, Class 142202, File 53787
- CE
- RoHS complaint

Technical Data
Effective March 2017

Dimensions - in

Custom designs

Printed circuit board versions available up to 60 amps . Consult your Bussmann series product representative for details.
UL Component Recognized, Guide JFHR2, File E56412.
Dimensions - in

Time-current curves - average melt

Current-limitation curves

RMS SYMMETRICAL CURRENT IN AMPS
A-B = ASYMMETRICAL AVAILABLE PEAK (2.3 X SYM RMS AMPS)

Current-limiting effects

Prosp. S.C.C.	Let-through current (apparent RMS Sym. vs. fuse rating)							
-	15A	30A	60A	100A	200A	400A	600A	800A
500	1000	1000	1000	1000	1000	1000	1000	1000
1000	1000	1000	1000	1000	1000	1000	1000	1000
5000	1000	1000	1000	2000	3000	4000	5000	5000
10,000	1000	1000	1000	2000	3000	6000	8000	9000
15,000	1000	1000	2000	3000	4000	7000	10,000	11,000
20,000	1000	1000	2000	3000	4000	7000	10,000	12,000
25,000	1000	1000	2000	3000	5000	7000	11,000	13,000
30,000	1000	1000	2000	3000	5000	8000	12,000	14,000
35,000	1000	1000	2000	3000	5000	9000	13,000	15,000
40,000	1000	2000	2000	4000	5000	9000	13,000	15,000
50,000	1000	2000	2000	4000	6000	10000	14,000	17,000
60,000	1000	2000	3000	4000	6000	10000	16,000	18,000
70,000	1000	2000	3000	4000	7000	11000	17,000	19,000
80,000	1000	2000	3000	4000	7000	11000	17,000	20,000
90,000	1000	2000	3000	4000	7000	12000	18,000	21,000
100,000	2000	2000	3000	5000	7000	12,000	19,000	22,000
150,000	2000	3000	4000	6000	8000	14,000	22,000	25,000
200,000	2000	3000	4000	6000	9000	16,000	24,000	28,000

The only controlled copy of this data sheet is the electronic read-only version located on the Eaton network drive. All other copies of this document are by definition uncontrolled. This bulletin is intended to clearly present comprehensive product data and provide technical information that will help the end user with design applications. Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin. Once a product has been selected, it should be tested by the user in all possible applications.

Eaton

1000 Eaton Boulevard
Cleveland, OH 44122
Eaton.com
Bussmann Division
114 Old State Road
Ellisville, MO 63021
United States
United States
Eaton.com/bussmannseries
© 2017 Eaton
All Rights Reserved
Printed in USA
Publication No. 1029 - BU-SB13737 Maarch 2017

Eaton, Bussmann and Limitron are valuable trademarks of Eaton in the U.S. and other countries. You are not permitted to use countries. You are not permitted to use consent of Eaton.
CSA is a registered trademark of the Canadian Standards Group.
NEC is a registered trademark of the National
Fire Protection Association, Inc.
UL is a registered trademark of the
Underwriters Laboratories, Inc.

For Eaton's Bussmann series product information, call 1-855-287-7626 or visit: Eaton.com/bussmannseries

Follow us on social media to get the latest product and support information
f(1) in ${ }^{8}$

Description

The Littelfuse Class T fuse blocks offer many advantages such as space saving design, universal mounting holes, snap-to-release DIN rail mounts and available covers.

Features/Benefits

- Space-saving design
- Universal mounting holes for easy replacement
- One hand release from DIN rail for 30-60 A fuses
- Reinforced fuse clips are standard
- Covers available for most amperages to enhance safety

Specifications
Voltage Ratings
Ampere Ratings
Leakage Current
Withstand Rating
Flammability Rating
Approvals
Environmental
$300 \mathrm{~V} / 600 \mathrm{~V}$
$0-600 \mathrm{~A}$
$<0.6 \mathrm{~mA}$ at 600 V
200 kA RMS SYM
UL94 V-0
UL Listed (File: E14721)
CSA Certified (File: LR7316)
RoHS Compliant, Lead (Pb) Free

Recommended Fuses

300 V JLLN
600 V JLLS

Web Resources

Sample requests, downloadable CAD drawings and other technical information:
littelfuse.com/lft
littelfuse.com/fuseblocks

Ordering Information (Class T 300 V)

	ORDERING NUMBER							TORQUE	WIRE RANGE	WIRE TYPE				COVER ORDERING NUMBER*
	BASE ORDERING NUMBER	POLES			TERMINAL SUFFIX									
		1	2	3	$\begin{aligned} & \text { BOX } \\ & \text { LUG } \end{aligned}$	PRESSURE PLATE	SCREW							
30	LFT30030	1	2	3	C	-	-	$5.6 \mathrm{~N}-\mathrm{m}$ (50 in -lbs)	2-4 AWG	$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \stackrel{\rightharpoonup}{3} \end{aligned}$		$125^{\circ} \mathrm{C}$		LFT30030FBC
	Lrisous	1		3	c	-	-	$2.8 \mathrm{~N}-\mathrm{m}$ (25 in-lbs)	6-14 AWG			125 C	-	LFT30030FBC
60	LFT30060	1	2	3	C	-	-	$5.6 \mathrm{~N}-\mathrm{m}$ (50 in -lbs)	2-4 AWG			$125^{\circ} \mathrm{C}$	-	LFT30060FBC
						-	-	$2.8 \mathrm{~N}-\mathrm{m}(25 \mathrm{in}-\mathrm{lbs})$	6-14 AWG					
100	LFT30100	1	-	3	CS	-	-	$13.6 \mathrm{~N}-\mathrm{m}(120 \mathrm{in}-\mathrm{lbs})$	2/0-6 AWG			$130^{\circ} \mathrm{C}$	-	LFT30100FBC
								$4.5 \mathrm{~N}-\mathrm{m}(40 \mathrm{in}-\mathrm{lbs})$	8 AWG					
								$4.0 \mathrm{~N}-\mathrm{m}(35 \mathrm{in}-\mathrm{lbs})$	10-14 AWG					
200	LFT30200	1	-	3	CS	-	-	$31.1 \mathrm{~N}-\mathrm{m}(275 \mathrm{in}-\mathrm{lbs})$	$250 \mathrm{kcmil}-6$			$130^{\circ} \mathrm{C}$	-	-
400	LFT30400	1	-	3	CS	-	-	(2) $31.1 \mathrm{~N}-\mathrm{m}(275 \mathrm{in}-\mathrm{lbs}$)	$250 \mathrm{kcmil}-6$			$130^{\circ} \mathrm{C}$	-	-
600	LFT30600	1	-	3	CS	-	-	(2) $42.4 \mathrm{~N}-\mathrm{m}$ (375 in-lbs)	$500 \mathrm{kcmil}-6$			$130^{\circ} \mathrm{C}$	-	-

Ordering Information (Class T 600 V)

	ORDERING NUMBER							TORQUE	WIRE RANGE	WIRE TYPE			$\begin{aligned} & \text { 륻 } \\ & \text { 号 } \\ & \text { 름믈 } \end{aligned}$	COVER ORDERING NUMBER*
	BASE ORDERING NUMBER	POLES			TERMINAL SUFFIX									
		1	2	3	$\begin{aligned} & \text { BOX } \\ & \text { LUG } \end{aligned}$	PRESSURE PLATE	SCREW							
30	LFT60030	1	2)	P	S	$5.6 \mathrm{~N}-\mathrm{m}$ ($50 \mathrm{in}-\mathrm{lbs}$)	2-4 AWG	t see		$125^{\circ} \mathrm{C}$		
		,				p	S	$2.8 \mathrm{~N}-\mathrm{m}$ (25 in-lbs)	6-14 AWG	note		125		
60	LFT60060	1	2	3	C	-	-	$\frac{5.6 \mathrm{~N}-\mathrm{m}(50 \mathrm{in}-\mathrm{lbs})}{2.8 \mathrm{~N}-\mathrm{m}(25 \mathrm{in}-\mathrm{bs})}$	2-4 AWG			$125^{\circ} \mathrm{C}$	-	LFT60060FBC
								$13.6 \mathrm{~N}-\mathrm{m}(120 \mathrm{in}-\mathrm{lbs})$	2/0-6 AWG		든			
100	LFT60100	1	-	3	CS	-	-	$4.5 \mathrm{~N}-\mathrm{m}(40 \mathrm{in}-\mathrm{lbs})$	8 AWG	¢	$\stackrel{\sim}{0}$	$130^{\circ} \mathrm{C}$	-	LT60100FBC
								$4.0 \mathrm{~N}-\mathrm{m}$ (35 in-lbs)	10-14 AWG	3				
200	LFT60200	1	-	3	CS	-	-	$31.1 \mathrm{~N}-\mathrm{m}(275 \mathrm{in}-\mathrm{lbs})$	$250 \mathrm{kcmil}-6$			$130^{\circ} \mathrm{C}$	-	LT60200FBC
400	LFT60400	1	-	3	CS	-	-	(2) $31.1 \mathrm{~N}-\mathrm{m}$ (275 in-lbs)	$250 \mathrm{kcmil}-6$			$130^{\circ} \mathrm{C}$	-	LT60400FBC
600	LFT60600	1	-	3	CS	-	-	(2) $42.4 \mathrm{~N}-\mathrm{m}(375 \mathrm{in}-\mathrm{lbs})$	$500 \mathrm{kcmil}-6$			$130^{\circ} \mathrm{C}$	-	LT60600FBC

[^8]
LF SERIES CLASS T FUSE BLOCKS

Dimensions mm (inches)

300 V 30 A

300 V 60 A

300 V 100 A

LF SERIES CLASS T FUSE BLOCKS

Dimensions mm (inches)

600 V 30 A

600 V 60 A

600 V 100 A

Type T and Type TF

Type T transformers are designed with low impedance windings for excellent voltage regulation and can accommodate the high inrush current associated with contactors, starters, solenoids, and relays. Type T transformers are manufactured using the most advanced insulating materials and are the best choice if size and cost are of concern.
Type TF transformers include factory-installed primary and secondary fuse blocks. Type TF transformers consist of two primary fuse blocks and one secondary fuse block. The primary includes rejection-style clips to increase the AIC ratings for the fuses. Since the fuse blocks are mounted on the top of the transformer, Type TF transformers are interchangeable with Type T transformers except for their increased height.

Selection Guide

1. Determine the inrush and sealed VA of each coil in the control circuit and the VA of all other components.
2. Total the sealed VA of all operating coils and the VA of all other loads. (This determines the minimum VA size required for the circuit.)
3. Total the inrush VA of all coils that are starting at the same time and all loads and coils that are running.
4. Locate a value in the VA column of Table 14.23 Regulation Chart for Type T, page 14-14, shown below, that is equal to or greater than the value calculated in step 2
5. In the VA row selected in step 4, find the inrush value under the appropriate voltage regulation column of Table 14.23 Regulation Chart for Type T, page 14-14, shown below. If this value is greater than the calculated value from step 3, this is the correct transformer VA rating.

If the inrush value on the selected VA row is not greater than the calculated value from step 3, use the next higher transformer VA rating, that is, the rating on the next row.
If your supply voltage is stable and fluctuates less than 5\%, Schneider Electric recommends you use the 90% secondary voltage column. If your supply voltage is not stable and fluctuates more than 10% we recommend you use the 95% secondary voltage column. We recommend that you never use the 85% secondary voltage column since magnetic devices lose life expectancy if they are continuously started at 85% of rated voltage.

Table 14.23: Regulation Chart for Type T

$*$	Inrush VA @ 20\% power factor		Inrush VA @ 40\% power factor			
	95% Secondary Voltage	90% Secondary Voltage	85% Secondary Voltage	Secondary Voltage	Secondary Voltage	Secondary Voltage
50	193	266	339	151	215	282
75	271	396	20	210	318	430
100	339	499	659	266	404	549
150	666	893	1120	529	731	942
200	588	815	1041	459	659	866
250	1416	1910	2388	1057	1494	1936
300	1634	2184	2709	1194	1681	2169
350	1894	2592	3261	1392	2005	621
500	3197	4104	4981	2374	3195	4019
750	3770	5515	7231	2887	4391	5945
1000	6587	9079	11430	4706	6886	9051
1500	19324	23983	28607	15066	19361	23756
2000	31384	38777	6161	24794	31630	38667
3000	26539	39934	52713	19355	30721	42216
5000	53111	85265	116277	39368	66309	93882

Table 14.24: 240×480 V Primary, 120 V Secondary; 230×460 V Primary, 115 V Secondary; 220×440 V Primary, 110 V Secondary

vm		Type T	Type TF	Weight	Height				Width		Depth		Accesory Fingersafe Covers	
UL/CSA/NOM	CE		Catalog No.		in.	mm	in.	mm	in.	mm	in.	mm		
25	25	9070T25D1	9070TF25D1		2.5	2.58	66	4.00	102	3.00	76	3.09	79	peer
50	50	9070T50D1	9070TF50D1	2.5	2.58	66	4.00	102	3.00	76	3.09	79	FSC1	
75	75	9070T75D1	9070TF75D1	3.8	2.89	73	4.18	106	3.38	86	3.34	85	FSC1	
100	100	9070T100D1	9070TF100D1	3.8	2.89	73	4.18	106	3.38	86	3.34	85	FSC1	
150	150	9070T150D1	9070TF150D1	5.5	3.20	81	4.50	114	3.75	95	3.59	91	FSC1	
200	200	9070T200D1	9070TF200D1	5.5	3.20	81	4.50	114	3.75	95	3.59	91	FSC1	
250	160	9070T250D1	9070TF250D1	7.1	3.20	81	4.50	114	3.75	95	5.30	135	FSC2	
300	200	9070T300D1	9070TF300D1	8.5	3.84	98	5.13	130	4.50	114	4.74	120	FSC2	
350	250	9070T350D1	9070TF350D1	10.5	3.84	98	5.13	130	4.50	114	5.11	130	FSC2	
500	300	9070T500D1	9070TF500D1	11.9	3.84	98	5.13	130	4.50	114	5.49	139	FSC2	
750	500	9070T750D1	Oofutrivos	11.0	4.51	115	5.80	147	5.25	133	5.61	143	5002	
1000	630	9070T1000D1	9070TF1000D1	20.6	4.51	115	5.80	147	5.25	133	6.30	160	FSC2	
1500	1000	9070T1500D1	90707515000	34.0	6.17	157	7.46	190	7.06	179	5.92	150	7002	
2000	1500	9070T2000D1	9070TF2000D1	47.0	6.17	157	7.46	190	7.06	179	7.17	182	FSC2	
3000	2000	9070T3000D1	左	60.0	8.75	222	7.	100	9.00	229	7.24	184	FSC2	
5000	3000	9070T5000D1	-	89.0	8.75	222	-	-	0	229	15	232	FSC2	

Table 14.25: 208 Vac Primary, 120 Vac Secondary

VA			Type TF	Weight	Height				Width		Depth		Acceso- ry Finger- safe Covers
		Type ${ }^{\text {T }}$	Type TF		Type T		Type TF						
UL/CSANOM	CE	Catalog No.			in.	mm	in.	mm	in.	mm	in.	mm	
25	25	9070T25D3	9070TF25D3	2.5	2.58	66	4.00	102	3.00	76	3.09	79	FSC1
50	50	9070T50D3	9070TF50D3	2.5	2.58	66	4.00	102	3.00	76	3.09	79	FSC1
75	75	9070T75D3	9070TF75D3	3.8	2.89	73	4.18	106	3.38	86	3.34	85	FSC1
100	100	9070T100D3	9070TF100D3	3.8	2.89	73	4.18	106	3.38	86	3.34	85	FSC1
150	150	9070T150D3	9070TF150D3	5.5	3.20	81	4.50	114	3.75	95	3.59	91	FSC1
200	200	9070T200D3	9070TF200D3	5.5	3.20	81	4.50	114	3.75	95	3.59	91	FSC1
250	160	9070T250D3	9070TF250D3	7.1	3.20	81	4.50	114	3.75	95	5.30	135	FSC2
300	200	9070T300D3	9070TF300D3	8.5	3.84	98	5.13	130	4.50	114	4.74	120	FSC2
350	250	9070T350D3	9070TF350D3	10.5	3.84	98	5.13	130	4.50	114	5.11	130	FSC2
500	300	9070 T500D3	9070TF500D3	11.9	3.84	98	5.13	130	4.50	114	5.49	139	FSC2
750	500	9070T750D3	9070TF750D3	11.0	4.51	115	5.80	147	5.25	133	5.61	143	FSC2
1000	630	9070T1000D3	9070TF1000D3	20.6	4.51	115	5.80	147	5.25	133	6.30	160	FSC2
1500	1000	9070T1500D3	9070TF1500D3	34.0	6.17	157	7.46	190	7.06	179	5.92	150	FSC2
2000	1500	9070T2000D3	9070TF2000D3	47.0	6.17	157	7.46	190	7.06	179	7.17	182	FSC2
3000	2000	9070T3000D3	-	60.0	8.75	222	-	-	9.00	229	7.24	184	FSC2
5000	3000	9070T5000D3	-	89.0	8.75	222	-	-	9.00	229	9.15	232	FSC2

Table 14.26: 600 Vac Primary, 120 Vac Secondary

VA				Weight	Height				Width		Depth		Acceso- ry Fingersafe Covers
		Type T	Type TF		Type T		Type TF						
UL/CSANOM	CE	Catalog No.			in.	mm	in.	mm	in.	mm	in.	mm	
25	25	9070T25D5	9070TF25D5	2.5	2.58	66	4.00	102	3.00	76	3.09	79	FSC1
50	50	9070T50D5	9070TF50D5	2.5	2.58	66	4.00	102	3.00	76	3.09	79	FSC1
75	75	9070T75D5	9070TF75D5	3.8	2.89	73	4.18	106	3.38	86	3.34	85	FSC1
100	100	9070T100D5	9070TF100D5	3.8	2.89	73	4.18	106	3.38	86	3.34	85	FSC1
150	150	9070T150D5	9070TF150D5	5.5	3.20	81	4.50	114	3.75	95	3.59	91	FSC1
200	200	9070T200D5	9070TF200D5	5.5	3.20	81	4.50	114	3.75	95	3.59	91	FSC1
250	160	9070T250D5	9070TF250D5	7.1	3.20	81	4.50	114	3.75	95	5.30	135	FSC2
300	200	9070T300D5	9070TF300D5	8.5	3.84	98	5.13	130	4.50	114	4.74	120	FSC2
350	250	9070T350D5	9070TF350D5	10.5	3.84	98	5.13	130	4.50	114	5.11	130	FSC2
500	300	9070T500D5	9070TF500D5	11.9	3.84	98	5.13	130	4.50	114	5.49	139	FSC2
750	500	9070T750D5	9070TF750D5	11.0	4.51	115	5.80	147	5.25	133	5.61	143	FSC2
1000	630	9070T1000D5	9070TF1000D5	20.6	4.51	115	5.80	147	5.25	133	6.30	160	FSC2
1500	1000	9070T1500D5	9070TF1500D5	34.0	6.17	157	7.46	190	7.06	179	5.92	150	FSC2
2000	1500	9070T2000D5	9070TF2000D5	47.0	6.17	157	7.46	190	7.06	179	7.17	182	FSC2
3000	2000	9070T3000D5	-	60.0	8.75	222	-	-	9.00	229	7.24	184	FSC2
5000	3000	9070T5000D5	-	89.0	8.75	222	-	-	9.00	229	9.15	232	FSC2

Table 14.27: 277 Vac Primary, 120 Vac Secondary

VA		Type T	Type TF[1]	Weight	Height				Width		Depth		Accesory Fingersafe Covers
			Type Tfi]		Type T		Type TF						
UL/CSA/NOM	CE	Catalog No.			in.	mm	in.	mm	in.	mm	in.	mm	
25	25	9070T25D4	-	2.5	2.58	66	-	-	3.00	76	3.09	79	FSC1
50	50	9070T50D4	-	2.5	2.58	66	-	-	3.00	76	3.09	79	FSC1
75	75	9070T75D4	-	3.8	2.89	73	-	-	3.38	86	3.34	85	FSC1
100	100	9070T100D4	-	3.8	2.89	73	-	-	3.38	86	3.34	85	FSC1
150	150	9070T150D4	-	5.5	3.20	81	-	-	3.75	95	3.59	91	FSC1
200	200	9070T200D4	-	5.5	3.20	81	-	-	3.75	95	3.59	91	FSC1
250	160	9070T250D4	-	7.1	3.20	81	-	-	3.75	95	5.30	135	FSC2
300	200	9070T300D4	-	8.5	3.84	98	-	-	4.50	114	4.74	120	FSC2
350	250	9070T350D4	-	10.5	3.84	98	-	-	4.50	114	5.11	130	FSC2
500	300	9070T500D4	-	11.9	3.84	98	-	-	4.50	114	5.49	139	FSC2
750	500	9070T750D4	-	11.0	4.51	115	-	-	5.25	133	5.61	143	FSC2
1000	630	9070T1000D4	-	20.6	4.51	115	-	-	5.25	133	6.30	160	FSC2
1500	1000	9070T1500D4	-	34.0	6.17	157	-	-	7.06	179	5.92	150	FSC2
2000	1500	9070T2000D4	-	47.0	6.17	157	-	-	7.06	179	7.17	182	FSC2
3000	2000	9070T3000D4	-	60.0	8.75	222	-	-	9.00	229	7.24	184	FSC2
5000	3000	9070T5000D4	-	89.0	8.75	222	-	-	9.00	229	9.15	232	FSC2

FNM 13/32" x l-1/2" 250Vac time-delay supplemental fuses

Catalog symbol / color code:

- FNM

Green (250Vac max)

Description:

Time-delay supplemental fuse.
For superior protection, Eaton recommends upgrading to Bussmann series Low-Peak ${ }^{\text {TM }}$ Class CC fuses. See data sheet No. 1023.

Specifications:

Ratings

Fuse amp range	Interrupting rating at system voltage		Agency information	
	250Vac	125Vac	UL $^{\circledR}$	CSA $^{\circledR}$
$1 / 10$ to 1	35 A	10 kA	X	X
$1-1 / 8$ to $3-1 / 2$	100 A	10 kA	X	X
4 to 10	200 A	10 kA	X	X
12 to 30	10 kA	-	X	X

Agency information

- CE
- UL Listed, Std. 248-14, Guide JDYX; File E19180
- CSA Certified, Class 1422-01, File 53787
- RoHS compliant

Catalog numbers (amps)

FNM-1/10	FNM-8/10	FNM-2-1/2	FNM-6-1/4
FNM-1/8	FNM-1	FNM-2-8/10	FNM-7
FNM-15/100	FNM-1-1/8	FNM-3	FNM-8
FNM-2/10	FNM-1-1/4	FNM-3-2/10	FNM-9
FNM-1/4	FNM-1-4/10	FNM-3-1/2	FNM-10
FNM-3/10	FNM-1-1/2	FNM-4	FNIVI-12
FNM-4/10	FNM-1-6/10	FNM-4-1/2	FNM-15
FNM-1/2	FNM-1-8/10	FNM-5	FNM-20
FNM-6/10	FNM-2	FNM-5-6/10	FNM-25
FNM-3/4	FNM-2-1/4	FNM-6	FNM-30

Carton quantity

Amps	Oty.
$1 / 10$ to 30	10

Dimensions - in (mm):

Features

- Color coded green for 250 Vac maximum voltage rating
- Melamine tube construction
- Nickel-plated endcaps

Typical applications

- Circuits with high inrush currents (motor/transformer loads)
- Supplemental protection for inductive circuits up to 250Vac.

Recommended fuse blocks/fuse holders

Catalog symbol	Description Blocks	Data sheet No.
BMM	1-, 2- and 3-pole modular blocks with optional covers	10235
DIN-Rail holders / switches		
CCP-_-30M	1-, 2- and 3-pole switch	1157
CHM	1-, 2- and 3-pole	3185
Optima NG	3-pole protection module	1109
Optima	3 -pole holder	1102
Optima	3-pole holder + switch	1103
Panel mount holders		
HPM and HPM-D	1-pole holder	2112
HPC-D	1-pole holder	2109
HPS2	2-pole holder	2140
HPF, HPF-C and HPF-WT	1-pole holder	2114
HPS	1-pole holder	2113
HPG and HPD	1-pole holder	2108
In-line holders		
HEB	1-pole holder	2127
HEX	2-pole holder	2126
Fuseclips		
$\begin{aligned} & \text { 1A3400, } 5956 \\ & \text { and } 5960 \end{aligned}$	PCB fuseclips	2132
Fuse covers		
CVR(I)-CCM(-QC)	Finger-safe fuse cover	10235

Time-current characteristic curves - total clearing:

Time-current characteristic curves - average melt:

The only controlled copy of this data sheet is the electronic read-only version located on the Eaton network drive. All other copies of this document are by definition uncontrolled. This bulletin is intended to clearly present comprehensive product data and provide technical information that will help the end user with design applications. Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin. Once a product has been selected, it should be tested by the user in all possible applications.

Eaton
1000 Eaton Boulevard
Cleveland, OH 44122
United States
Eaton.com

Bussmann Division

114 Old State Road
Ellisville, MO 63021
United States
Eaton.com/bussmannseries

(C) 2015 Eaton

All Rights Reserved
Printed in USA
Publication No. 2028 - BU-SB14291
December 2015

Eaton, Bussmann and Low-Peak are valuable trademarks of Eaton in the US and other countries. You are not permitted to use the Eaton trademarks without prior written consent of Eaton.

CSA is a registered trademark of the Canadian Standards Group.
UL is a registered trademark of the Underwriters Laboratories, Inc.

For Eaton's Bussmann series product information,
call 1-855-287-7626 or visit:
Eaton.com/bussmannseries

FNQ-R - 600Vac, ½-30A, Time-Delay Fuses

Description: Advanced protection Class CC current-limiting, time-delay fuses.
Catalog Symbol: FNQ-R-(amp)

Ratings:

$$
\text { Volts }-600 \mathrm{Vac}
$$

-300 Vdc (15 \& 20A)

- 32Vdc (Self Certified)

Amps - 11/4-30A
IR - 200kA Vac RMS Sym.

- 20kA Vdc (15 \& 20A)

Agency Information:

CE, UL Listed, Std. 248-4, Class CC, Guide JDDZ, File E4273
CSA Certified, Class CC CSA, Class 1422-01,
File 53787-HRC-MISC
RoHS Compliant*

* FNQ-R-1/4 not RoHS complaint.

Catalog Numbers (amps)

FNQ-R-1/4	FNQ-R-1\%	FNQ-R-3/10	FNQ-R-8
FNQ-R-3/10	FNQ-R-1/10	FNQ-R-31/2	FNQ-R-9
FNQ-R-4/10	FNQ-R-11/2	FNQ-R-4	FNQ-R-10
FNQ-R-1/2	FNQ-R-1\%10	FN-R-41/2	FNQ-R-12
FNQ-R-\% 10	FNQ-R-1\%10	FNQ-R-5	FNQ-R-15
FNQ-R-3/4	FNQ-R-2	FNQ-пר-5\%	FNQ-R-171/2
FNQ-R-310	FNQ-R-21/4	FNQ-R-6	FNQ-R-20
FNQ-R-1	FNQ-R-21/2	FNQ-R-61/4	FNQ-R-25
FNQ-R-11/8	FNQ-R-2\%/10	FNQ-R-7	FNQ-R-30
FNQ-R-11/4	FNQ-R-3	FNQ-R-71/2	

Carton Quantity and Weight

Amp Rating	Carton Qty.
$1 / 4-30$	10

Maximum Acceptable Rating of Overcurrent Device ${ }^{\dagger}$	
Rated Primary Current (Amps)	Maximum Rating of Overcurrent Protective Device Expressed As a Percent of Transformer Primary Current Rating
$<2 \mathrm{~A}$	500^{+1}
2A to 9A	167
$>9 \mathrm{~A}$	125
\dagger UL 508A Table 42.1. $\dagger \dagger$ 300\% for other th	motor control applications.

Dimensions - in

Features:

- The Class CC FNQ-R Limitron fuse meets the needs of control circuit transformer protection
- Current-limitation protects downstream components against damaging thermal and magnetic effects of short-circuit currents
- Rejection feature of FNQ-R fuses meets the need for a rejection type fuse in equipment where available fault current can exceed 10kA
- High inrush time-delay so control circuit transformers can experience inrush currents up to 85 times their full-load current rating.
- FNQ-R fuses can be sized according to NEC^{\circledR} and UL requirements and still allow the high inrush currents, with significantly more time-delay than the UL minimum value of 12 seconds at 200% for Class CC fuses
- Melamine tube
- Nickel-plated brass endcaps

Applications:

- Branch Circuits - Line Protection
- Small Control Transformers
- Industrial Control

Recommended Fuse Blocks and Holders

Fuse Amps	1-Pole	2-Pole	3-Pole
Open Blocks			
0-30	BC6031_	BC6032	BC6033
DIN-Rail Holders			
0-30	CHCC1D	CHCC2D	CHCC3D
	-	-	OPM-NG-
	-	-	OPM-1038
	-	-	OPM-1038_SW
Panel Mount Holders			
0-30	HPS	-	-
	HPF	-	-
In-Line Holders			
0-30	-	HEX	-
	HEZ	-	-

For additional information on Class CC fuse blocks and holders, see Data Sheets:

- Open Blocks \# 1105 (BC Series)
- DIN-Rail Holders \# 3185 (CHCC), \# 1109 (OPM), \# 1102 (OPM-1038), 1103 (OPM-1038_SW),
- Panel Mount Holders \# 2113 (HPS), \# 2114 (HPF)
- In-Line Holders \# 2126 (HEX), \# 2130 (HEZ)

FNQ-R - 600Vac, $1 / 4-30 \mathrm{~A}$, Time-Delay Fuses
Time-Current Curves - Average Melt
$1 / 2$ to $7^{1 / 2}$ Amps

FNQ-R - 600Vac, ½-30A, Time-Delay Fuses
Time-Current Curves - Average Melt
15 to 30 Amps

[^9]Table 14.28: 240×480 V Primary, 120/240 V Secondary; 230×460 V Primary, 115/230 V Secondary; 220×440 V Primary, $110 / 220$ V Secondary

VA		Type T	Type TF[2]	Weight	Height				Width		Depth		Accesory Fingersafe Covers	
		Type T			Type TF									
UL/CSA/NOM	CE		Catalog No.		in.	mm	in.	mm	in.	mm	in.	mm		
25	25	9070T25D31	9070TF25D31		2.5	2.58	66	4.00	102	3.00	76	3.09	79	FSC1
50	50	9070T50D31	9070TF50D31	2.5	2.58	66	4.00	102	3.00	76	3.09	79	FSC1	
75	75	9070T75D31	9070TF75D31	3.8	2.89	73	4.18	106	3.38	86	3.34	85	FSC1	
100	100	9070T100D31	9070TF100D31	3.8	2.89	73	4.18	106	3.38	86	3.34	85	FSC1	
150	150	9070T150D31	9070TF150D31	5.5	3.20	81	4.50	114	3.75	95	3.59	91	FSC1	
200	200	9070T200D31	9070TF200D31	5.5	3.20	81	4.50	114	3.75	95	3.59	91	FSC1	
250	160	9070T250D31	9070TF250D31	7.1	3.20	81	4.50	114	3.75	95	5.30	135	FSC2	
300	200	9070T300D31	9070TF300D31	8.5	3.84	98	5.13	130	4.50	114	4.74	120	FSC2	
350	250	9070T350D31	9070TF350D31	10.5	3.84	98	5.13	130	4.50	114	5.11	130	FSC2	
500	300	9070T500D31	9070TF500D31	11.9	3.84	98	5.13	130	4.50	114	5.49	139	FSC2	
750	500	9070T750D31	9070TF750D31	11.0	4.51	115	5.80	147	5.25	133	5.61	143	FSC2	
1000	630	9070T1000D31	9070TF1000D31	20.6	4.51	115	5.80	147	5.25	133	6.30	160	FSC2	
1500	1000	9070T1500D31	9070TF1500D31	34.0	6.17	157	7.46	190	7.06	179	5.92	150	FSC2	
2000	1500	9070T2000D31	9070TF2000D31	47.0	6.17	157	7.46	190	7.06	179	7.17	182	FSC2	
3000	2000	9070T3000D31	-	60.0	8.75	222	-	-	9.00	229	7.24	184	FSC2	
5000	3000	9070T5000D31	-	89.0	8.75	222	-	-	9.00	229	9.15	232	FSC2	

Table 14.29: 600 Vac Primary, 120/240 Vac Secondary

VA		Type T	Type TF[2]	Weight	Height				Width		Depth		Accesory Finger-safe Covers	
UL/CSA/NOM	CE		Catalog No.		in.	mm	in.	mm	in.	mm	in.	mm		
25	25	9070T25D37	9070TF25D37		2.5	2.58	66	4.00	102	3.00	76	3.09	79	FSC1
50	50	9070T50D37	9070TF50D37	2.5	2.58	66	4.00	102	3.00	76	3.09	79	FSC1	
75	75	9070T75D37	9070TF75D37	3.8	2.89	73	4.18	106	3.38	86	3.34	85	FSC1	
100	100	9070T100D37	9070TF100D37	3.8	2.89	73	4.18	106	3.38	86	3.34	85	FSC1	
150	150	9070T150D37	9070TF150D37	5.5	3.20	81	4.50	114	3.75	95	3.59	91	FSC1	
200	200	9070T200D37	9070TF200D37	5.5	3.20	81	4.50	114	3.75	95	3.59	91	FSC1	
250	160	9070T250D37	9070TF250D37	7.1	3.20	81	4.50	114	3.75	95	5.30	135	FSC2	
300	200	9070T300D37	9070TF300D37	8.5	3.84	98	5.13	130	4.50	114	4.74	120	FSC2	
350	250	9070T350D37	9070TF350D37	10.5	3.84	98	5.13	130	4.50	114	5.11	130	FSC2	
500	300	9070T500D37	9070TF500D37	11.9	3.84	98	5.13	130	4.50	114	5.49	139	FSC2	
750	500	9070T750D37	9070TF750D37	11.0	4.51	115	5.80	147	5.25	133	5.61	143	FSC2	
1000	630	9070T1000D37	9070TF1000D37	20.6	4.51	115	5.80	147	5.25	133	6.30	160	FSC2	
1500	1000	9070T1500D37	9070TF1500D37	34.0	6.17	157	7.46	190	7.06	179	5.92	150	FSC2	
2000	1500	9070T2000D37	9070TF2000D37	47.0	6.17	157	7.46	190	7.06	179	7.17	182	FSC2	
3000	2000	9070T3000D37	-	60.0	8.75	222	-	-	9.00	229	7.24	184	FSC2	
5000	3000	9070T5000D37	-	89.0	8.75	222	-	-	9.00	229	9.15	232	FSC2	

Table 14.30: 380/400/415 Vac Primary, 115/230 Vac Secondary

VA		Type T	Type TF	Weight	Height				Width		Depth		Accesory Fingersafe Covers
			Type		Type T		Type TF						
UL/CSA/NOM	CE	Catalog No.			in.	mm	in.	mm	in.	mm	in.	mm	
25	25	9070T25D33	9070TF25D33	2.5	2.58	66	4.00	102	3.00	76	3.09	79	FSC1
50	50	9070T50D33	9070TF50D33	2.5	2.58	66	4.00	102	3.00	76	3.09	79	FSC1
75	75	9070T75D33	9070TF75D33	3.8	2.89	73	4.18	106	3.38	86	3.34	85	FSC1
100	100	9070T100D33	9070TF100D33	3.8	2.89	73	4.18	106	3.38	86	3.34	85	FSC1
150	150	9070T150D33	9070TF150D33	5.5	3.20	81	4.50	114	3.75	95	3.59	91	FSC1
200	200	9070T200D33	9070TF200D33	5.5	3.20	81	4.50	114	3.75	95	3.59	91	FSC1
250	160	9070T250D33	9070TF250D33	7.1	3.20	81	4.50	114	3.75	95	5.30	135	FSC2
300	200	9070T300D33	9070TF300D33	8.5	3.84	98	5.13	130	4.50	114	4.74	120	FSC2
350	250	9070T350D33	9070TF350D33	10.5	3.84	98	5.13	130	4.50	114	5.11	130	FSC2
500	300	9070T500D33	9070TF500D33	11.9	3.84	98	5.13	130	4.50	114	5.49	139	FSC2
750	500	9070T750D33	9070TF750D33	11.0	4.51	115	5.80	147	5.25	133	5.61	143	FSC2
1000	630	9070T1000D33	9070TF1000D33	20.6	4.51	115	5.80	147	5.25	133	6.30	160	FSC2
1500	1000	9070T1500D33	9070TF1500D33	34.0	6.17	157	7.46	190	7.06	179	5.92	150	FSC2
2000	1500	9070T2000D33	9070TF2000D33	47.0	6.17	157	7.46	190	7.06	179	7.17	182	FSC2
3000	2000	9070T3000D33	-	60.0	8.75	222	-	-	9.00	229	7.24	184	FSC2
5000	3000	9070T5000D33	-	89.0	8.75	222	-	-	9.00	229	9.15	232	FSC2

Field Installed Fuse Blocks-Design for Line to Line Primary Voltages and Line to Neutral Secondary Voltages

Table 14.31: Accessories

Cataivy iv.	Voltage Codes			Description	Order Qty
Fuse Kit					
-	D1, D2, D3, D4, D5, D13, D14,D15, D23, D31, D33, D37	D20, D32	D19, D50	-	-
9070FB3A	T25-T200	T25-T150	-	3-pole fuse block for primary and secondary fusing, accommodates 1$1 / 2 \times 13 / 32$ in. midget fuse (2 rejection and 1 non-rejection)	1
9070FB3B	T250-T3000	T250-T2000	T25-T2000		1
9070FB2A	T25-T200	T25-T150	-	2 -pole fuse block for primary fusing, accommodates $1-1 / 2 \times 13 / 32$ in. midget fuse (2 rejection)	1
9070FB2B	T250-T3000	T250-T2000	T25-T2000		1
9070SF25A	T25-T200	T25-T150	-	Secondary fuse clips accommodates $1-1 / 4 \times 1 / 4 \mathrm{in}$. fuse	10
9070SF25B	T250-T3000	T250-T2000	T25-T2000		10
9070SF41A	T25-T200	T25-T150	-	Secondary fuse clips accommodates $1-1 / 2 \times 13 / 32$ in. fuse	10
9070SF41B	T250-T3000	T250-T2000	T25-T2000		10
9070FB1A	T25-T200	T25-T150	-	Secondary fuse block accommodates 1-1/4 $\times 1 / 4$ in. fuse	1
$0070-818$	T250-T3000	T250-T2000	T25-T2000		1
9070FP1	-	-	-	Fuse puller for TF and FB kits	10

[2] TF designed for line to line primary and line to neutral secondary. If secondary connected in series, fuse block should be disconnected.

Zelio Logic compact smart relay

Combination of modular smart relays and extensions

1 Modular Zelio Logic smart relay (10 or 26 I/O)
2 Discrete (6, 10, or 14 I/O) or analog (4 I/O) I/O extension

1 Modular Zelio Logic smart relay (10 or 26 I/O)
2 Modbus serial link or Ethernet Modbus/TCP network communication extensions
3 Discrete (6, 10, or 14 I/O) or analog (4 I/O) I/O extension
\triangle Observe the order of assembly above when using a Modbus slave or Ethernet server network communication extension and a discrete or analog I/O extension. An I/O extension cannot be inserted before a network communication extension.

Presentation

Zelio Logic smart relays are designed for use in small automated systems. They are used in both the industrial and commercial sectors.

- For industry:

\square automation of small finishing, production, assembly, or packaging machines

- small automated systems operating at $48 \mathrm{~V} \sim$ (hoisting application, etc.)
\square decentralized automation of ancillary equipment for large and medium-sized machines (in the textile, plastics, materials processing sectors, etc.)
\square automation systems for agricultural machinery (irrigation, pumping, greenhouses, etc.)
- For the commercial/building sectors:
\square automation of barriers, roller shutters, access control
\square automation of lighting systems
- automation of compressors and air conditioning systems
\square etc.

Their compact size and ease of setup make them a competitive alternative to solutions based on cabled logic or specific cards.

- Programming

Simple programming, backed up by the universal nature of the languages, meets the requirements of automation specialists and the needs of electricians.
Programming can be performed:
\square locally, using the buttons on the Zelio Logic smart relay (ladder language)

- on a PC using "Zelio Soft 2" software

When using a PC, programming can be performed either in ladder language or in function block diagram (FBD) language (see page 10).

The LCD display unit backlight (1) is activated by pressing one of the 6 programming buttons on the Zelio Logic smart relay or by programming with "Zelio Soft 2" software (e.g. flashing when diagnosing a malfunction).

The clock has a lithium battery, which gives it an independent operating time of 10 years.
Data backup (preset values and current values) is provided by an EEPROM Flash memory (with the same lifetime as the smart relay).

Compact smart relays

Compact smart relays meet requirements for simple automation systems.
The number of I/O can be:

- 12 or $20 \mathrm{I} / \mathrm{O}$, supplied with $24 \mathrm{~V} \sim$ or 12 V -- power
- 20 I/O, supplied with $48 \mathrm{~V} \sim$ power
- 10, 12, or 20 I/O, supplied with $100 \ldots 240 \mathrm{~V} \sim$ or 24 V --. power

Modular smart relays and extensions

The number of I/O for modular smart relays can be:

- 26 I/O, supplied with 12 V -.- power
- 10 or 26 I/O, supplied with $24 \mathrm{~V} \sim, 100 \ldots 240 \mathrm{~V} \sim$, or 24 V --- power

To improve performance and flexibility, Zelio Logic modular smart relays can take extensions to obtain a maximum of $40 \mathrm{I} / \mathrm{O}$.

- Modbus serial link or Ethernet Modbus/TCP network communication extensions, supplied with $24 \mathrm{~V}=-$ power via the Zelio Logic smart relay at the same voltage ■ analog I/O extension with 4 I/O, supplied with 24 V --. power via the Zelio Logic smart relay at the same voltage
■ discrete I/O extensions with 6, 10, or 14 I/O, supplied with power via the Zelio Logic smart relay at the same voltage
(1) LCD: Liquid crystal display

Presentation (continued)

Zelio Logic - Smart relays Compact and modular smart relays

Connecting cable

Memory cartridge

Modbus serial link communication extension

Modem communication interface

Ethernet Modbus/TCP communication extension

GSM/UMTS modem

HMI terminals

HMISTO Small Panels offer added value to the equipment by enabling the creation of eye-catching dialog screens.
They are available in monochrome (HMISTO501) or color (HMISTO705) versions. They connect directly to the front panel of the smart relays in the memory cartridge slot via the special cable (SR2CBL09).
The terminals are configured using Vijeo Designer (HMISTO501) or Vijeo XD (HMISTO705) software. Exchanges with the smart relay are simplified using the SLIn and SLout data exchange blocks in "Zelio Soft 2" (FBD language only). 24 words can be exchanged in each direction.
(1) Global System Mobile (2G)/Universal Mobile Telecommunications System (3G)

Programming in FBD language

Simulation mode

Monitoring window

"Zelio Soft 2" for PC - version 5.1 (1)

"Zelio Soft 2" software enables:

- programming in ladder language or function block diagram (FBD) language
(see page 12)
- simulation, monitoring, and supervision

■ uploading and downloading of programs

- print-out of customized files
- automatic program compilation
- online help

Consistency checks and application languages

"Zelio Soft 2" monitors applications by means of its consistency check function. An indicator turns red at the slightest input error (ladder language). The problem can be located simply by clicking the mouse.
"Zelio Soft 2" software allows users to switch between the 6 languages (English, French, German, Italian, Portuguese, and Spanish) at any time and edit the application file in the selected language.

Inputting messages for display on Zelio Logic

"Zelio Soft 2" software allows text function blocks to be configured, which can then be displayed on Zelio Logic smart relays that have a display.

Program testing

2 test modes are provided:

- The simulation mode in "Zelio Soft 2" is used to test a program without a

Zelio Logic smart relay, i.e. to:
\square enable discrete inputs

- display output status
\square vary the voltage of the analog inputs
\square enable the programming buttons
\square simulate the application program in real time or in accelerated time
- display the different active program elements dynamically in red
- The monitoring is used to test the program executed by the smart relay, i.e. to:
\square display the program "online"
\square force inputs, outputs, auxiliary relays, and current function block values
- adjust the date and time
- switch from STOP mode to RUN mode and vice versa

In simulation or monitoring mode, the supervision window allows users to view the status of the smart relay I/O within the application environment (diagram or image).
(1) These functions exist for versions $\geqslant \vee 5.1$.

Presentation (continued)

Zelio Logic - Smart relays

Compact and modular smart relays

"Zelio Soft 2" programming software

Structure of a split wiring sheet

"Acceleration and simulation terminals" window

User interfaces

"Zelio Soft 2" software (versions $\geqslant 4.1$) improves the ease of use of user interfaces for the following functions:

"Split wiring sheet" function (ladder and FBD language)

The wiring sheet can be split into 2 to allow two separate parts of the wiring sheet to be displayed on the same screen.

This can be used to:

- Display the required function blocks in the top and bottom parts of the screen
- Move the split bar as required
- Connect the function blocks between the 2 parts of the wiring sheet

The split wiring sheet is structured as follows:
1 View of top part
2 Top window vertical scroll bar
3 Top window horizontal scroll bar
4 Split bar
5 View of bottom part
6 Bottom window vertical scroll bar
7 Bottom window horizontal scroll bar

"Replace function block" function (FBD language)

This function allows a block to be replaced without losing the input and output connections.
E.g. replacing an "OR" block with a "NOR" block

2 Move the links to the new "NOR" block

3 Delete the "OR" block and position the "NOR" block in its place

"Time Prog simulation" function (ladder and FBD languages)

 Ladder or FBD program simulation mode allows the program to be debugged by simulating it on the software workshop host computer.A function allows the time on the simulator clock to be modified by setting it to 3 s before the start of the next event .

The "Next event" button 1 is used to modify the simulator clock 2.

Zelio Logic - Smart relays Compact and modular smart relays "Zelio Soft 2" programming software

[^10] 16 counters, and 32 auxiliary relays are available and the program is limited to 120 ladder diagram lines.

Zelio Logic - Smart relays
 Compact and modular smart relays
 "Zelio Soft 2" programming software

Function block language (FBD/Grafcet SFC/logic functions) (1)

Definition

FBD language allows graphical programming based on the use of predefined function blocks, and provides the use of:
■ 35 preprogrammed functions for counting, time delay, timing, switching threshold definition (e.g. temperature regulation), pulse generation, time programming, multiplexing, and display
■ 7 SFC functions

- 6 logic functions

Pre-programmed functions

Zelio Logic smart relays provide a high processing capacity, up to 500 (2) function blocks, including 35 pre-programmed functions:
TIMERAC

Timer. Function A/C (ON-delay and OFF-delay)	Timer. Function BH (adjustable pulsed signal)	Pulse generator (ON-delay, OFF-delay)	Timer. Function BW (pulse on rising/falling edge)	Timer. Function A/C with external preset adjustment (ON-delay and OFF-delay)
		단 BISTABLE		$=-\sqrt{-D O O L E A N}$
Timer. Function BH with external preset adjustment (adjustable pulsed signal)	Pulse generator with external preset adjustment (ON-delay, OFF-delay)	Impulse relay function	Bistable latching - Priority assigned either to SET or RESET function	Allows logic equations to be created between connected inputs
CAM Cam programmer	? \mathcal{Z} 근 PRESET COUNT PRESET COUNT Up/down counter	\{극ㄴ UP DOWN COUNT UPDOWN COUNT Up/down counter with external preset		
$\underset{\text { GBIN }}{ } \text { GAIN }$		尔: MUX	$\begin{aligned} & \text { MAX COMP IN ZONE } \\ & \text { VMIN }_{\text {WIL }}^{\text {MIN }} \end{aligned}$	
Allows conversion of an analog value by change of scale and offset	Defines an activation zone with hysteresis	Multiplexing functions on 2 analog values	Zone comparison (Min. \leqslant Value \leqslant Max.)	Add and/or subtract function
$x \%=$				$\begin{aligned} & \text { COMPARE } \\ & \text { COMPARE } \end{aligned}$
Multiply and/or divide function	Display of digital and analog data, date, time, messages for Human-Machine interface	Display of digital and analog data, date, time, messages for Human-Machine interface	Sending of messages with communication interface (see page 32)	Comparison of 2 analog values using the operands $=,>,<, \leq, \geq, \neq$
			CRN ${ }^{\text {L }}$ - ${ }^{\text {CAN }}$	
Access to smart relay status	Storage of 2 values simultaneously	Fast counting up to 1 kHz	Analog-to-digital converter	Digital-to-analog converter
			SUNRISE/SUNSET	$\xrightarrow{\infty} \operatorname{PID}$
Input of a word via serial link	Output of a word via serial link	Tracks the sun's position	Outputs the sunrise and sunset times	Temperature, level, flow rate, or pressure control functions
SFC functions (3) (GRAFCET)				
RESET-INIT			DIV-OR 2	\square CONV-OR 2 COHU-OR2 Convergence to OR
$\text { DIV-AND } 2$				
Divergence to AND	Convergence to AND			
Logic functions				
=8)- AND	$\bar{z} 1-\text { OR }$		$2=1$	$\mathrm{f}^{\mathrm{nOT}}$
AND function OR	unction NOTAND	function NOT OR function	n Exclusive OR func	HOT NOT function

(h) New feature for 2017
(1) Function block diagram
(2) Possible in version V5.0 or above of "Zelio Soft 2"
(3) Sequential function chart

Function block language (FBD/Grafcet SFC/logic functions) (continued) Macro function

Creating a macro

Inside a macro
1 Select macro
2 Edit properties
3 Return to external view of a macro
4 Internal function block in the macro
5 Non-connected inputs
6 Non-connected outputs

External view of a macro
1 Input connections
2 Output connection
3 Macro function block

PID function

Modifying parameters (Kp, Ti, Td) using the programming and parameter setting buttons

Presentation

The PID function block is used to program simple temperature, level, or pressure control functions.
Two types of output enable adaptation to the most common actuators available on the market:

- Analog output, requiring the use of a modular smart relay and an analog I/O extension
- PWM output, enabling the integrated outputs in any smart relay to be used. Depending on the period set for PWM, and to help extend service life, a smart relay equipped with transistor outputs is recommended.

Programming

PID function blocks are available in FBD language. To help with tuning, default parameters are available for several typical applications (flow, level, pressure, temperature). These parameters can be modified.

Tuning

The TEXT and DISPLAY function blocks are used to help tune the control parameters (Kp, Ti, Td) without using Zelio Soft 2: the parameters can be modified directly using the buttons on the front of the smart relay and the display.

Modular smart relays
 With display - 10 and 26 I/O

Discrete I/O extensions

Discrete I/O extension front panels comprise:
1 Two retractable mounting feet
2 Terminals for connecting the inputs
3 Terminals for connecting the outputs
4 Connector for connection to the Zelio Logic smart relay (powered via the Zelio Logic smart relay)
5 Locating pegs

SR2SFT01

SR2PACK•••

Compact smart relays with display

Number of I/O	Discrete inputs	Including 0-10 V =analog inputs	Relay outputs	Transistor outputs	Clock	Reference	Weight kg lb
24 V ~ power supply							
12	8	0	4	0	Yes	SR2B121B	$\begin{aligned} & 0.250 \\ & 0.551 \\ & \hline \end{aligned}$
20	12	0	8	0	Yes	SR2B201B	$\begin{aligned} & 0.380 \\ & 0.838 \end{aligned}$
48 V ~ power supply							
20	12	0	8	0	No	SR2A201E (1)	$\begin{aligned} & 0.380 \\ & 0.838 \end{aligned}$
$100 . .240 \mathrm{~V} \sim$ power supply							
10	6	0	4	0	No	SR2A101FU (1)	$\begin{aligned} & 0.250 \\ & 0.551 \\ & \hline \end{aligned}$
12	8	0	4	0	Yes	SR2B121FU	$\begin{aligned} & 0.250 \\ & 0.551 \\ & \hline \end{aligned}$
20	12	0	8	0	No	SR2A201FU (1)	$\begin{aligned} & 0.380 \\ & 0.838 \\ & \hline \end{aligned}$
					Yes	SR2B201FU	$\begin{aligned} & 0.380 \\ & 0.838 \end{aligned}$
$12 \mathrm{~V}=$ - power supply							
12	8	4	4	0	Yes	SR2B121JD	$\begin{aligned} & 0.250 \\ & 0.551 \\ & \hline \end{aligned}$
20	12	6	8	0	Yes	SR2B201JD	$\begin{aligned} & 0.380 \\ & 0.838 \end{aligned}$
24 V --- power supply							
10	6	0	4	0	No	SR2A101BD (1)	$\begin{aligned} & 0.250 \\ & 0.551 \\ & \hline \end{aligned}$
12	8	4	4	0	Yes	SR2B121BD	$\begin{aligned} & 0.250 \\ & 0.551 \\ & \hline \end{aligned}$
			0	4	Yes	SR2B122BD	$\begin{aligned} & 0.220 \\ & 0.485 \\ & \hline \end{aligned}$
20	12	2	8	0	No	SR2A201BD (1)	$\begin{aligned} & 0.380 \\ & 0.838 \\ & \hline \end{aligned}$
		6	8	0	Yes	SR2B201BD	$\begin{aligned} & 0.380 \\ & 0.838 \\ & \hline \end{aligned}$
			0	8	Yes	SR2B202BD	$\begin{aligned} & 0.000 \\ & 0.280 \\ & 0.617 \end{aligned}$

"Zelio Soft 2" software
See page 20

Connection accessories

See page 20

Compact "discovery" packs

Pack contents:
Compact smart relay with display SR2B••••••

+ "Zelio Soft 2" programming software on CD-ROM SR2SFT01
+ PC connecting cable SR2USB01

Number of I/O	Pack contents (references)	Reference	Weight kg lb
100... $240 \mathrm{~V} \sim$ power supply			
12	SR2B121FU	SR2PACKFU	$\begin{aligned} & 0.700 \\ & 1.543 \end{aligned}$
	+ SR2SFT01		
	+ SR2USB01		
20	SR2B201FU	SR2PACK2FU	$\begin{aligned} & 0.850 \\ & 1.874 \end{aligned}$
	+ SR2SFT01		
	+ SR2USB01		
24 V --- power supply			
12	SR2B121BD	SR2PACKBD	$\begin{aligned} & 0.700 \\ & 1.543 \end{aligned}$
	+ SR2SFT01		
	+ SR2USB01		
20	SR2B201BD	SR2PACK2BD	0.700
	+ SR2SFT01		1.543
	+ SR2USB01		

Modem communication interface

12... 24 V --- power supply
Description Reference

Modem communication interface
See page 32
(1) Programming in ladder language only

SR2SFT01

SR2USB01

Compact smart relays without display							
Number of I/O	Discrete inputs	Including 0-10 V =analog inputs	Relay outputs	Transistor outputs	Clock	Reference	Weight kg lb
24 V ~ power supply							
12	8	0	4	0	Yes	SR2E121B	$\begin{aligned} & 0.220 \\ & 0.485 \end{aligned}$
20	12	0	8	0	Yes	SR2E201B	$\begin{aligned} & 0.350 \\ & 0.772 \end{aligned}$
100... 240 V ~ power supply							
10	6	0	4	0	No	SR2D101FU (1)	$\begin{aligned} & 0.220 \\ & 0.485 \end{aligned}$
12	8	0	4	0	Yes	SR2E121FU	$\begin{aligned} & 0.220 \\ & 0.485 \end{aligned}$
20	12	0	8	0	No	SR2D201FU (1)	$\begin{aligned} & 0.350 \\ & 0.772 \end{aligned}$
					Yes	SR2E201FU	$\begin{aligned} & 0.350 \\ & 0.772 \end{aligned}$
24 V --- power supply							
10	6	0	4	0	No	SR2D101BD (1)	$\begin{aligned} & 0.220 \\ & 0.485 \end{aligned}$
12	8	4	4	0	Yes	SR2E121BD	$\begin{aligned} & 0.220 \\ & 0.485 \end{aligned}$
20	12	2	8	0	No	SR2D201BD (1)	$\begin{aligned} & 0.350 \\ & 0.772 \end{aligned}$
		6	8	0	Yes	SR2E201BD	0.350

"Zelio Soft 2" software
See page 20

Accessories

See page 20
Modem communication interface

$$
\text { 12... } 24 \mathrm{~V} \text {--- power supply }
$$

Modem communication interface
See page 32
(1) Programming in ladder language only

Modem communication interface

Zelio Logic - Smart relays Modular smart relays

Modular smart relays with display							
Number of I/O	Discrete inputs	Including 0-10 V -analog inputs	Relay outputs	Transistor outputs	Clock	Reference	Weight kg lb
24 V ~ power supply							
10	6	0	4	0	Yes	SR3B101B	$\begin{aligned} & 0.250 \\ & 0.551 \end{aligned}$
26	16	0	10 (1)	0	Yes	SR3B261B	0.400
100... 240 V ~ power supply							
10	6	0	4	0	Yes	SR3B101FU	0.250
26	16	0	10 (1)	0	S	SR3B261F	0.400
12 V -- power supply							
26	16	6	10 (1)	0	Yes	SR3B261JD	0.400
24 V --- power supply							
10	6	4	4	0	Yes	SR3B101BD	0.250
			0	4	Yes	SR3B102BD	0.220
26	16	6	10 (1)	0	Yes	SR3B261BD	0.400
			0	10	Yes	SR3B262BD	0.300

"Zelio Soft 2" software

See page 20.

Connection accessories

See page 20.

Modular "discovery" packs

Pack contents:
Modular smart relay with display SR3B••••

+ "Zelio Soft 2" programming software on CD-ROM SR2SFT01
+ PC connecting cable SR2USB01

Number of I/O	Pack contents (references)	Reference	Weight kg lb
100... 240 V ~ power supply			
10	SR3B101FU	SR3PACKFU	$\begin{aligned} & 0.700 \\ & 1.543 \end{aligned}$
	+ SR2SFT01		
	+ SR2USB01		
26	SR3B261FU	SR3PACK2FU	$\begin{aligned} & \hline 0.850 \\ & 1.874 \end{aligned}$
	+ SR2SFT01		
	+ SR2USB01		
24 V --- power supply			
10	SR3B101BD	SR3PACKBD	$\begin{aligned} & 0.700 \\ & 1.543 \end{aligned}$
	+ SR2SFT01		
	+ SR2USB01		
26	SR3B261BD	SR3PACK2BD	0.850
	+ SR2SFT01		1.874
	+ SR2USB01		

(1) Including 8 outputs at maximum current of 8 A and 2 outputs at maximum current of 5 A . Note: The Zelio Logic smart relay and its associated extensions have an identical voltage to be able to operate together.

Zelio Logic－Smart relays Modular smart relays

SR3XT141JD

Modem communication interface

Communication extension（1）		
24 V －－－power supply（via SR3B．．．BD smart relays）		
For use with	Communication ports	Reference
SR3B••1BD and SR3B••2BD Zelio Logic modular smart relays	Modbus RS485 serial link （RJ45）	See page 22
	Ethernet Modbus／TCP（RJ45）	See page 22

Analog I／O extension（2）					
24 V －－－power supply（via Zelio Logic SR3B．．．BD smart relay）					
Number Inputs of I／O	Including－－－		Including	0－10 V－－－	Reference
	0－10 V	0－20 mA	Pt100	output	
2	2 max．	2 max．	1 max．	2	See page 30

Discrete I／O extensions				
	Discrete inputs	Relay outputs	Reference	Weight kg lb
24 V ～power supply（via Zelio Logic SR3Bゃゃ७ smart relays）				
6	4	2	SR3XT61B	$\begin{aligned} & 0.125 \\ & 0.276 \end{aligned}$
10	6	4	SR3XT101B	$\begin{aligned} & 0.200 \\ & 0.441 \end{aligned}$
14	8	6 （3）	SR3XT141B	$\begin{aligned} & 0.220 \\ & 0.485 \end{aligned}$
100－240 V～power supply（via Zelio Logic SR3Bっゃ॰FU smart relays）				
6	4	2	SR3XT61FU	$\begin{aligned} & 0.125 \\ & 0.276 \\ & \hline \end{aligned}$
10	6	4	SR3XT101FU	$\begin{aligned} & 0.200 \\ & 0.441 \end{aligned}$
14	8	6 （3）	R3XT141F	$\begin{aligned} & 0.220 \\ & 0.485 \end{aligned}$
12 V －－－power（via Zelio Logic SR3B261JD smart relay）				
6	4	2	SR3XT61JD	$\begin{aligned} & 0.125 \\ & 0.276 \end{aligned}$
10	6	4	SR3XT101JD	$\begin{aligned} & 0.200 \\ & 0.441 \end{aligned}$
14	8	6 （3）	SR3XT141JD	$\begin{aligned} & 0.220 \\ & 0.485 \end{aligned}$
6	4	2	SR3XT61BD	$\begin{aligned} & 0.125 \\ & 0.276 \end{aligned}$
10	6	4	SR3XT101BD	$\begin{aligned} & 0.200 \\ & 0.441 \end{aligned}$
14	8	6 （3）	SR3XT141BD	$\begin{aligned} & 0.220 \\ & 0.485 \end{aligned}$

Modem communication interface（4）

12．．． 24 V －－－power supply
Description Reference
Modem communication interface See page 32

[^11]

Programming			
Description	Use	Reference	Weight kg lb
"Zelio Soft 2" software			
Programming software "Zelio Soft 2", multilingual, supplied on CD-ROM (1)	For PC and 32-bit and 64-bit operating systems compatible with Windows 7, 8.1, and 10	SR2SFT01	$\begin{aligned} & 0.200 \\ & 0.441 \end{aligned}$
HMI			
Magelis Small Panel with monochrome touch screen	3.4 " monochrome screen with 3 colors (green, orange, red) 16 MB application memory capacity Programmed using Vijeo Designer \geqslant V6.0	HMISTO501	$\begin{aligned} & 0.200 \\ & 0.441 \end{aligned}$
Magelis Small Panel with color TFT touch screen	4.3" color screen 26 MB application memory capacity Programmed using Vijeo XD	HMISTO705 (2)	$\begin{gathered} 0.2201 \\ 0.485 \end{gathered}$
Connection accessories			
Connecting cables Length: 3 m (9.84 ft.) For use with "Zelio Soft 2"	Between the PC (9-way SUB-D connector) and the Zelio Logic smart relay (programming port connector)	SR2CBL01	$\begin{aligned} & 0.150 \\ & 0.331 \end{aligned}$
	Between the PC (USB connector) and the Zelio Logic smart relay (programming port connector)	SR2USB01	$\begin{aligned} & 0.100 \\ & 0.220 \end{aligned}$
Connecting cables Length: 2.5 m (8.20 ft .)	Between the Magelis XBTN, XBTR, or XBTRT Small Panel (8 -way mini-DIN connector) and the Zelio Logic smart relay (programming port connector)	SR2CBL08	$\begin{aligned} & 0.100 \\ & 0.220 \end{aligned}$
	Between the Magelis HMISTO501 or HMISTO705 Small Panel (9-way removable screw terminal block) and the Zelio Logic smart relays (programming port connector)	SR2CBL09	
Bluetooth interface for Zelio Logic smart relays	Between the PC (wireless link) and the Zelio Logic smart relay. Range of 10 m (32.80 ft .) (class 2)	SR2BTC01	$\begin{aligned} & 0.015 \\ & 0.033 \end{aligned}$
Memory cartridges (3)			
EEPROM memory cartridges	For firmware (software embedded in the smart relay) version $\leqslant 2.4$	SR2MEM01	$\begin{aligned} & 0.010 \\ & 0.022 \end{aligned}$
	For firmware (software embedded in the smart relay) version $\geqslant 3.0$	SR2MEM02	$\begin{aligned} & 0.010 \\ & 0.022 \end{aligned}$

Online documentation available

User Manuals for direct programming on the Zelio Logic smart relay (in English, French, German, Italian, Portuguese, or Spanish): please visit our website www.schneider-electric.com.

Regulated switch mode power supplies		
Input voltage	Nominal output voltage	Reference
100... $240 \mathrm{~V} \sim(50 / 60 \mathrm{~Hz})$	$5 \mathrm{~V}=-\mathrm{c}, 12 \mathrm{~V}=-$, or $24 \mathrm{~V}=-$	Please refer to the product catalog (DIA3ED2170401EN) and visit our website www.schneider-electric.com
Converters		
Description		Reference
Converters for J and K type thermocouples, for Pt 100 probes, and voltage/current		See page 38

(1) Also available as a free download from www.schneider-electric.com.
2) The SR2CBL09 cable used to connect an HMISTO705 terminal to a smart relay must be equipped with a shunt between the terminals marked CTS and RTS. This shunt is included on all cables leaving the factory after June 2017 (date code 1722).
(3) The use of memory cartridge SR2MEM02 to load the program is not compatible with the SR2COM01 modem communication interface.

30 mm Multifunction Operators UL Types 4, 4X, 13/NEMA 4, 4X, 13
Table 19.249: Non-Illuminated Push-Pull Screw-on Mushroom Operators, Plastic Head[73]

	Description	Color	With 2 N.C. Contacts (1 KA3, 1 KA5)	With 1 N.O. 11 N.C. Contact (1 KA1)	Without Contacts [74]
	3 Position				
START PUSH	Momentary PullMaintained NeutralMomentary Push [75]	Red	SKR8RH25	-	SKR8R
		Green	SKR8GH25	-	SKR8G
		Other [76]	SKR84H25	-	SKR84
	2 Position[77]				
	Maintained PullMaintained Push	Red	-	SKR9RH13	SKR9R
9001SKR9R Non-Illuminated		Green	-	SKR9GH13	SKR9G
1-5/8 in. Diameter Knob Includes Type KN179WP Legend Plate Marked Pull To Start Push To Stop		Other [76]	-	SKR94 ${ }^{\text {H13 }}$	SKR9 ${ }^{\text {4 }}$

Table 19.250: Non-Illuminated Turn-to-Release Mushroom Operators ${ }_{[73]}$

Table 19.251: Screw-On Plastic Illuminated Push-Pull Mushroom Operators[73]

Illuminated	Description	Voltage	With Red Knob and 2 N.C. Contacts (1 KA3, 1 KA5) [78]	With Other Color Knob and 2 N.C. Contacts [76] [78]	With Other Color Knob Without Contacts [74] [76] [78]
	Momentary PullMaintained NeutralMomentary Push [79]	$110-120 \mathrm{~V}, 50-60 \mathrm{~Hz}$	SKR8P1RH25	SKR8P1 4 H25	SKR8P14
		Other-Transformer, LED, Flashing [80]	SKR8P*RH25	SKR8P* ${ }^{\text {H25 }}$	SKR8P* \triangle
		$\begin{aligned} & \text { Other-Full Voltage, Resistor, } \\ & \text { Neon [75] } \end{aligned}$	SKR8P*RH25	SKR8P* ${ }^{\text {H }}$ 25	SKR8P* \triangle
	Description	Voltage	With Red [77] Knob and 1 N.O. \& 1 N.C. Contact (KA1)	With Other Color Knob and 1 N.O. \& 1 N.C. Contact (KA1) [76]	With Other Color Knob Without Contacts [76]
9001SKR9P1 Illuminated 1-5/8 in. Diameter Knob Includes Type KN179WP Legend Plate Marked Pull to Start Push To Stop	2 Position				
	Maintained PullMaintained Push	$110-120 \mathrm{~V}, 50-60 \mathrm{~Hz}$	SKR9P1RH13	SKR9P14H13	SKR9P14
		$\begin{gathered} \text { Other-Transformer, L.E.D., } \\ \text { Flashing [80] } \end{gathered}$	SKR9P \bullet RH13	SKR9P•4H13	SKR9P* \triangle
		Other-Full Voltage, Resistor, Neon [75]	SKR9PTRH13	SKR9P**H13	SKR9P* \triangle

Table 19.252: Color Codes

Color	SKR11, SKR12	SKR8, SKR9
Black [81]	B	B
Red	R	R
Green	G	G
Blue	L	L
Yellow	Y	Y
White	W	W
Orange $[81]$	S	S
Clear	-	C
Amber	-	A
Gray	E	-

Table 19.253: Positions for 9001SKR8RH1 or H13

			9001SKR8RH1 or H13		
(KA1)		PULL	CTR	PUSH	
	KA3	K	O	O	

Table 19.254: Positions for 9001SKR8H25

	9001SKR8H25		
	PULL	CTR	PUSH
KA3	X	0	0
KA5	X	X	0
KA2	0	0	X

NOTE: To select and order Contact Blocks, Light Modules, Knobs, and Accessories, see Type KA Contact Blocks, page 19-90 through Hermetically Sealed Power Reed Contact Blocks, page 19-92.
[73] When ordering, add prefix 9001 to the catalog number.
[74] These operators can be ordered complete with contact blocks. For maximum block usage, see " H " Codes, page 19-93. Add the chosen " H " number to the end of the operator.
[75] On neon light modules, use clear knobs only.
[76] $\boldsymbol{\Delta}$ See Table 19.252 Color Codes, page 19-83 and insert the color code in the Type number. Example: SKR9() with a yellow knob = SKR9Y
[77] To obtain a red knob with "Push Emergency Stop" printed on the red knob-substitute " $R 05$ " in place of " R "
[78] Add the voltage assembly code as chosen from Standard and Shallow Depth Light Modules, page 19-91. Example: SKR8P* with 277 V 50-60 Hz = SKR8P8
[79] For positions, refer to Table 19.253 Positions for 9001SKR8RH1 or H13, page 19-83 and Table 19.254 Positions for 9001SKR8H25, page 19-83.
[80] The knob must be the same color as the LED light module chosen, for example, for a green LED, use a green knob.
[81] These colors are not available on illuminated push-pull operators.

Standard and Shallow Depth Light Modules

Table 19.273: Standard Light Modules for Types K, SK, and KX Control Units[121][122][123][124]

NOTE: Light modules are available in other voltages. For additional information, refer to Catalog 9001CT0001
The products in Table 19.273 have been assigned Temperature Classifications (T-Codes) in accordance with UL 121201 (2017) - Nonincendive Electrical Equipment for Use in Class I and II, Division 2 and Class III, Divisions 1 and 2 Hazardous (Classified) Locations. These codes can aid the user in proper application of these products in accordance with ISO/ISA/IEC 60079-0 (2017-12) Explosive Atmospheres - Part 0: Equipment - General Requirements and the National Electric Code NFPA 70 - Article 500.
NOTE: Light modules shown in Table 19.274 are not UL Certified for use in hazardous locations.
Table 19.274: Shallow Depth Light Modules For Types K and SK Control Units [121] [123] [127] [122]

S
File: LR25490
Class: 321103

C
marked
[121] For use with all operators except KX and remote test pilot.
[122] For use in hazardous locations-See Square D Offering According to Class, Division, and Group, page 19-92.
[123] With LED light modules, use either a clear color cap or a cap the same color as the LED.
[124] With neon type light modules, use a clear color cap only.
[125] When ordering, add prefix 9001 to the catalog number.
[126] Not for use on KX operators.
[127] Reduces the depth of illuminated push buttons with contact blocks by over 33%.

Type SK Corrosion Resistant Non-
Illuminated Operators
Class 9001 Refer to Catalog 9001CT1103
30 mm Momentary Push Button Operators, UL Types 4, NEMA 4, 4X, 13
Table 19.247: Non-Illuminated Momentary Push Button Operators[67]

Description	Color	Operator with 1 N.O. and 1 N.C. Cantant (KA1)	Operator with 1 N.O. Contact (KA2)	Operator with 1 N.C. Contact (KA3)	Operator Only No Contacts [68]
9001SKR1B Full Guard	Black	SKR1BH13	SKR1BH5	SKR1BH6	SKR1B
	Red	$\xrightarrow[\text { SKR1RH12 }]{ }$	SKR1RH5	SKR1RH6	SKR1R
	Green	SKR1GH13	SKR1GH5	SKR1GH6	SKR1G
	Universal [69]	SKR1UH13	SKR1UH5	SKR1UH6	SKR1U
	Other [70]	SKR1-H13		SKR1-H6	SKR1■
$\begin{aligned} & \text { 9001SKR3B } \\ & \text { No Guard } \\ & \hline \end{aligned}$	Black	SKR3BH13	SKR3BH5	SKR3BH6	SKR3B
	Red	SKR3RH13	SKR3RH5	SKR3RH6	SKR3R
	Green	SKR3GH13	SKR3GH5	SKR3GH6	SKR3G
	Universal [69]	SKR3UH13	SKR3UH5	SKR3UH6	SKR3U
	Other [70]	SKR3-H13	SKR3-H5	SKR3-H6	SKR3■
	Black	SKR2BH13	SKR2BH5	SKR2BH6	SKR2B
	Red	SKR2RH13	SKR2RH5	SKR2RH6	SKR2R
,	Green	SKR2GH13	SKR2GH5	SKR2GH6	SKR2G
	Universal [69]	SKR2UH13	SKR2UH5	SKR2UH6	SKR2U
9001SKR2B Extended Guard	Other [70]	SKR2■	SKR2.H5	SKR2-H6	SKR2■
9001SKR4B 1-3/8 in. (35 mm) Mushroom Button	Snap-In Mushroom Button				
	Black	SKR4BH13	SKR4BH5	SKR4BH6	SKR4B
	Red	SKR4RH13	SKR4RH5	SKR4RH6	SKR4R
	Red [71]	SKR4R05H13	SKR4R05H5	SKR4R05H6	SKR4R05
	Green	SKR4GH13	SKR4GH5	SKR4GH6	SKR4G
	Other [72]	SKR4 4 H13	SKR4 4 H5	SKR4 4 H6	SKR4
	Screw-On Mushroom Button with Set Screw Security				
	Black	SKR24BH13	SKR24BH5	SKR24BH6	SKR24B
	Red	SKR24RH13	SKR24RH5	SKR24RH6	SKR24R
	Green	SKR24GH13	SKR24GH5	SKR24GH6	SKR24G
	Other [72]	SKR24 ${ }^{\text {H }} 13$	SKR24 4 H5	SKR24 4 H6	SKR24
9001SKR5 2-1/4 in. (57 mm) Mushroom Button	Snap-In Mushroom Button, Plastic Head				
	Black	SKR5BH13	SKR5BH5	SKR5BH6	SKR5B
	Red	SKR5RH13	SKR5RH5	SKR5RH6	SKR5R
	Red [71]	SKR5R05H13	SKR5R05H5	SKR5R05H6	SKR5R05
	Green	SKR5GH13	SKR5GH5	SKR5GH6	SKR5G
	Other [72]	SKR54H13	SKR5 4 H5	SKR5 4 H6	SKR5
	Screw-On Mushroom Button with Set Screw Security, Plastic Head				
	Black	SKR25BH13	SKR25BH5	SKR25BH6	SKR25B
	Red	SKR25RH13	SKR25RH5	SKR25RH6	SKR25R
	Green	SKR25GH13	SKR25GH5	SKR25GH6	SKR25G
	Other [72]	SKR254H13	SKR254H5	SKR254H6	SKR25

Table 19.248: Color Codes
$\left.\begin{array}{c|c|c}\text { Color } & \text { SKR1, 2, 3 Place Color Code in Type } & \Delta \text { SKR4, 5, 24, 25 Place Color Code in Type } \\ \text { Number }\end{array}\right]-\mathrm{L}$

NOTE: To select and order Contact Blocks, Light Modules, Knobs, and Accessories, see Type KA Contact Blocks, page 19-90 through Hermetically Sealed Power Reed Contact Blocks, page 19-92.
NOTE: For use in hazardous locations-See Square D Offering According to Class, Division, and Group, page 1992. Contact blocks and legend plate not included unless otherwise noted.

67] When ordering, add prefix 9001 to the catalog number
68] These operators can be ordered complete with contact blocks. For maximum block usage, see "H" Codes, page 19-93. Add the "H" number to the end of the operator type number.
[69] The universal push button operators include one each of the following color inserts: black, red, green, yellow, orange, blue and white.
[70] $■$ See Table 19.248 Color Codes, page 19-82.
[71] Knob has the words "Emergency Stop" in raised letters highlighted in white for readability.
[72] $\boldsymbol{\Delta}$ See Iable 19.248 Color Codes, page 19-82.

Type KA Contact Blocks

The Class 9001 Type KA contact blocks are Fingersafe $®$ contact blocks (meeting VDE 0106 Part 100). They have one screw mounting and captive (backed out) plus/minus terminal screws. These contact blocks are double-break, direct-acting contacts. Because of the wiping action of these contacts, they are suitable for use with programmable controllers. All contact blocks listed below accept up to 2 \#12-\#24 AWG solid or stranded wires. Recommended tightening torque for screw terminals is $7 \mathrm{lb}-\mathrm{in}$.

Symbol	Contact Blocks with Binder Head Screws (not Fingersafe)		Gold Flashed Contacts with Standard Pressure Wire Terminals
	Type [119]	Quantity [120]	Type [119]
$\frac{010}{0.0}$	KA21	25-Up	KA31
1	KA22	25-Up	KA32
0	KA23	25-Up	KA33
	KA24	25-Up	KA34
N.C. Contact Late Opening	KA25	25-Up	KA35

Contact blocks listed below are not Fingersafe, but provide:

- Terminals that accept ring tongue/fork tongue connectors
- Short single circuit contact blocks (0.75" deep vs. 0.97" deep on the Fingersafe)
- Same as old style Series G product available prior to March, 1989.
- For assembled operators, use form Y238 (add to catalog number as suffix, for example: $9001 \mathrm{KRU1} 1 \mathrm{H} 13 \mathrm{Y} 238$)

Table 19.270: Contact blocks (not Fingersafe)
$\left.\begin{array}{c|c|c|c}\hline \text { Symbol } & \text { Type [119] } & \text { Symbol } & \text { Type [119] } \\ \hline \text { K_O } & \text { KA1G } & \begin{array}{c}\text { N.O. Contact Early Closing }\end{array} & \text { KA4G } \\ \hline \text { KOO } & \text { KA2G } & \text { N.C. Contact Late Opening }\end{array}\right]$ KA5G

Table 19.271: Contact blocks with Quick-Connect terminals (not Fingersafe)

Symbol	Type [119]
$\square \mathrm{O}$	KA12
010	KA13

Table 19.272: Maximum Current Ratings for Control Circuit Contacts-Types KA1-KA6, KA21-KA25, KA31-KA35, KA1G-KA6G

Volts	AC						Volts	DC				
	Inductive (NEMA / UL Type A600) 35\% Power Factor					Resistive 75\% Power Factor Make, Break and Continuous Amperes		Inductive and Resistive (NEMA Q600)				
	Make		Break		Continuous Carrying Amperes			Make and Break				Continuous Carrying Capacity
	Amperes	VA	Amperes	VA				KA1	$\begin{aligned} & \text { KA2 } \\ & \text { KA3 } \end{aligned}$	KA4	$\begin{aligned} & \text { KA5 } \\ & \text { KA6 } \end{aligned}$	
120	60	7200	6.0	720	10	10	125	0.55	0.55	-	-	2.5
240	30		3.0				250	0.27	0.27	-	-	
480	15		1.5				600	0.10	0.10	-	-	
600	12		1.2									

Type SK Corrosion Resistant Pilot Lights
Table 19.265: Pilot Lights—UL Types 4, 4X, [105]

Description			Voltage	Style	With Red Fresnel Color Cap [106]	With Green Fresnel Color Cap [106]	With Other Color Cap [106] [107]	Without Color Cap [106]
	9001SKP1	Standard Pilot Light (Fresnel color cap shown)	$\begin{array}{\|l\|l\|} \hline 110-120 \mathrm{~V}, 50-60 \\ \mathrm{~Hz} \end{array}$	Transformer	SKP1R31	SKP1G31	SKP1.	SKP1
			$\begin{array}{\|l\|} \hline 220-240 \mathrm{~V}, 50-60 \\ \mathrm{~Hz} \\ \hline \end{array}$	Transformer	SKP7R31	SKP7G31	SKP7.	SKP7
			$24-28 \mathrm{Vac} / \mathrm{Vdc}$	Full Voltage	SKP35R31	SKP35G31	SKP35■	SKP35
			For other voltages [106]	Transformer, Flashing or LED [108]	SKP 4 R31	SKP\G31	SKPı	SKP
				Full Voltage, Neon or Resistor [109]	SKP\R31	SKP\G31	SKP\■	SKP\
$(3) \frac{3}{6}$	9001SKT1	Push-To-Test Pilot Light (Fresnel color cap shown)	$\begin{array}{\|l\|} \hline 110-120 \mathrm{~V}, 50-60 \\ \mathrm{~Hz} \end{array}$	Transformer	SKT1R31	SKT1G31	SKT1.	SKT1
			$\begin{array}{\|l} \hline 220-240 \mathrm{~V}, 50-60 \\ \mathrm{~Hz} \\ \hline \end{array}$	Transformer	SKT7R31	SKT7G31	SKT7•	SKT7
			24-28 Vac/Vdc	Full Voltage	SKT35R31	SKT35G31	SKT35■	SKT35
			For other voltages	Transformer, Flashing or LED [108]	SKT\R31	SKT\G31	P\%	SKTA
			[106]	Full Voltage, Neon or Resistor [109]	SKT\R31	SKT\G31	SKTAE)	SKTA
	9001SKTR38	Remote Test Pilot Light (Fresnel color cap shown)	120 Vac Only	Resistor	SKTR38R31	SKTR38G31	SNTPTor	SKTR38
Mr.3			24-28 Vac Only	Full Voltage	SKTR35R31	SKTR35G31	SKTR35■	SKTR35
			For other voltages [106] [107] [110]	Full Voltage or Resistor [111]	SKTR^R31	SKTR』 ${ }^{\text {a }}$ 31	SKTR4■	SKTR】

Table 19.266: Color Caps

Color	Plastic	A31
Amber [112]	Plastic Domed [112]	
Blue	A21	A9
Clear	L9	C9
Green	G31	G 9
Red	R 31	R 9
White	W 31	W 9
Yellow	V 31	Y 9

Typical Wiring Diagram

NOTE: To select and order Contact Blocks, Light Modules, Knobs, and Accessories, see Type KA Contact Blocks, page 19-90 through Hermetically Sealed Power Reed Contact Blocks, page 19-92
NOTE: For use in hazardous locations-See Square D Offering According to Class, Division, and Group, page 1992. Contact blocks and legend plate not included unless otherwise noted.
[110] Use only full voltage or resistor voltage assembly codes on remote test pilot lights. Do not choose LED, neon or transformer codes. For AC use only.
[111] Use only full voltage or resistor voltage assembly codes on remote test pilot lights. Do not choose LED (exception — these LED codes are allowed: 38LG, 38LL, 38LR, 38LW, 38LY), neon or transformer codes. For AC use only.
[112] Add the color code as chosen from the color cap table below.EXAMPLE: SKP1 with a blue fresnel cap = SKP1L31.

Standard and Shallow Depth Light Modules

Table 19.273: Standard Light Modules for Types K, SK, and KX Control Units[121][122][123][124]

NOTE: Light modules are available in other voltages. For additional information, refer to Catalog 9001CT0001
The products in Table 19.273 have been assigned Temperature Classifications (T-Codes) in accordance with UL 121201 (2017) - Nonincendive Electrical Equipment for Use in Class I and II, Division 2 and Class III, Divisions 1 and 2 Hazardous (Classified) Locations. These codes can aid the user in proper application of these products in accordance with ISO/ISA/IEC 60079-0 (2017-12) Explosive Atmospheres - Part 0: Equipment - General Requirements and the National Electric Code NFPA 70 - Article 500.
NOTE: Light modules shown in Table 19.274 are not UL Certified for use in hazardous locations.
Table 19.274: Shallow Depth Light Modules For Types K and SK Control Units [121] [123] [127] [122]

S
File: LR25490
Class: 321103

C ϵ
marked
[121] For use with all operators except KX and remote test pilot.
[122] For use in hazardous locations-See Square D Offering According to Class, Division, and Group, page 19-92.
[123] With LED light modules, use either a clear color cap or a cap the same color as the LED.
[124] With neon type light modules, use a clear color cap only.
[125] When ordering, add prefix 9001 to the catalog number.
[126] Not for use on KX operators.
[127] Reduces the depth of illuminated push buttons with contact blocks by over 33%.

Table 1.64: Plug-on Neutral Load Center Surge Packs (Compatible with Plug-On and Plug-On Neutral Circuit Breakers)

	Mains Rating	Max. 1P Circuits	Max. Tandem Circuit Break- ers	Load Center Box, Interior, Cover and Branch Circuit Breakers		Equipment Ground Bars Catalog Number	Main Wire Size AWG/kcmil		BoxNo.
				Catalog Number	Included Load Center / Circuit Breakers / SPD		Al	Cu	
Indoor	225	60	30	HOM3060L225PGCSVP2	(1) HOM3060I225PGC, (1) HOM230, (2) HOM120, (1) Plug-on Neutral HOM250PSPD, Cover \& Ground Bar	PK9GTA, PK18GTAL (included)	4-300	4-250	10
Rainproof	200	16	8	HOM816M200PFTRBSP2	(1) HOM816M200PFTRB \& (1) Plug-on Neutral HOM250PSPD	PK15GTA (order separately)			6R

QO Load Center Accessories

Table 1.65: QO Load Center Accessories

Description			Cat. No.	Schedule
Circuit Identification Stickers	Circuit identification stickers for use on cover directory labels to identify branch circuits		PSDS	DE5
Cover Sealing Strap	Provides means of sealing trim mounting screws on QO load center covers		Q01SE	DE3A
Door Lock Kits	Use with Q0612L100DF/S, QO612L100DFCU/SCU, QO612L100DTF/S, QO816L100DF/S, QO816L100DFCU/SCU, QO816L100DTF/S, QO48M30DSGP, or QO48M60DSGP		PK8FL [4]	DE3A
	Use with convertible mains, $1 \varnothing$ and $3 \varnothing 100-225$ A, and fixed mains, 3Ø 125-225 A indoor load centers		PK6FL	DE3A
	Use with 300 and 400 ampere indoor load centers		PK4FL	PE1A
Filler Plates	Fills opening in covers if twistout is removed in error		QOFP	DE3A
	Fills main circuit breaker opening in convertible load center covers 100-125 A		QOM1FP	DE3A
	Fills main circuit breaker opening in convertible load center covers 150-225 A		QOM2FP	DE3A
	Fills main circuit breaker opening in $3 \varnothing$ load center covers (S01 and S02 Series)		KFP	DE3A
	Fills main circuit breaker opening in "Q" style 3Ø load center covers (S03 Series)		Q2FP	DE3A
	Ground Bar Assembly-3 connectors		PK3GTA1	DE3A
	Ground Bar Assembly-4 connectors		PK4GTA	DE3A
	Ground Bar Assembly-7 connectors		PK7GTA	DE3A
	Ground Bar Assembly-9 connectors		PK9GTA	DE3A
	Ground Bar Assembly-12 connectors		PK12GTA	DE3A
	Ground Bar Assembly-15 connectors		PK15GTA	DE3A
	Ground Bar Assembly-18 connectors		P140071	DE3A
	Ground Bar Assembly-23 connectors		PK23GTA	DE3A
	Ground Bar Assembly-27 connectors		PK27GTA	DE3A
	Ground Bar Assembly-21 connectors. Use in high amperage load centers.		PK15GTA6	DE3A
	Standard PK15GTA with a 1-4/0 Al/Cu Lug		PK15GTAL	DE3A
	Standard PK18GTA with a 1-4/0 Al/Cu Lug		PK18GTAL	DE3A
	Standard PK23GTA with a 1-4/0 Al/Cu Lug		PK23GTAL	DE3A
	Ground Bar Pack- PK9GTA, PK9GTA, \& LK100AN		PKGTALP1	DE3A
	Ground Bar Pack- PK9GTA, PK18GTA, \& LK100AN		PKGTALP2	DE3A
	Ground Bar Pack-PK15GTA, PK18GTA, \& LK100AN		PKGTALP3	DE3A
	Insulator Kit for PK7GTA through PK27GTA		PKGTAB	DE3A
Handle Padlock Attachments	For padlocking main circuit breakers in convertible load centers OFF	50A-125A	QOM1PA	DE2E
	For padlocking main circuit breakers in convertible load centers OFF	100A-225A	QOM2PA	DE2E
Neutral Bonding Screw	For use on all Homeline and QO 125A convertible main load centers		4028344850K	DE5
	For use on QO 150A-225A convertible main load centers		4028345850K	DE5
Neutral / Ground Lugs	Field-installed for 12-2 AI or 14-4 Cu AWG wire		LK70AN	DE3A
	Field-installed for 6-2/0 Al/Cu AWG wire		LK100AN	DE3A
	Field-installed for 14-2/0 Al/Cu AWG wire		LK125AN	DE3A
	Field-installed for 2-3/0 Al/Cu AWG wire		LK150AN	DE3A
	Field-installed for 4 AWG to 300 kcmil Al/Cu wire. Use in Series S, 150-225A QO load center or S03 and below, 150-225A HOM load center		$\begin{gathered} \text { LK225AN } \\ \text { LK225ANHOM } \end{gathered}$	DE3A
Replacement Cover Directory Label	1 through 42 numbered universal replacement directory label for load center covers		LSDL	DE5
Retaining Kit for Breakers Used as Back-fed Mains	Secures circuit breaker to interior when used as a back-fed main. For QO612L100F/S, RB, QO612L100DF/S, QO816L100F/S, RB, QO816L100DF/S and QO148L125GF/S, GRB load centers		PK2MB	DE3A
	Secures 3P circuit breaker without accessories to left side of interior when used as a back-fed main. For $3 \varnothing$ load centers		PK3MB	DE3A
	Secures circuit breaker to interior when used as a back-fed main for 2P QO 150-200 A circuit breakers		PK5RK OBS	DE3A
	Secures ONE circuit breaker with or without electrical accessories to right side of interior when used as a back-fed main For 1Ø 100-125 ampere convertible main load centers. Series S01 and S02		PK4MB2LA	DE3A
	Secures ONE circuit breaker with or without electrical accessories to right side of interior when used as a back-fed main For 1Ø 150-225 ampere convertible main load centers. Series S01 and S02		PK4MB2HA	DE3A
Service Entrance Barriers	QO / Homeline 10 100-125 A QOM1 convertible main load centers		PKSB1LA	DE3A
	QO / Homeline 10 150-225 A QOM2 convertible main load centers		PKSB1HA	DE3A
	QO 30 convertible main load centers		PKSB3	DE3A
	QO $1 \varnothing$ back-fed main breaker applications		PKSB1QOBF	DE3A
	QO $3 \varnothing$ back-fed main breaker applications		PKSB3BF	DE3A
QO Load Center Manual Power Transfer Accessories				
Generator Circuit Breaker Interlock Kit	For use on "G" and "S" Series NEMA 1 and " G ", "S1" and "S2" Series NEMA 3R load centers. Interlocks a QOM1 2P main circuit breaker of a load center (100-125 A) with a QO 2P (15-125 A) branch circuit breaker. Includes a retaining kit.		QOCRBGK1C	DE3A
	For use on "G" and "S" Series NEMA 1 and " G " and "S1" Series NEMA 3R load centers. Interlocks a QOM2 2P main circuit breaker of a load center (150-225 A) with a QO 2P (15-125 A) branch circuit breaker. Includes a retaining kit.		QOCGK2C	DE3A
	For use on "S2" Series NEMA 3R load centers. Interlocks a QOM2 2P main circuit breaker of a load center (150-225 A) with a QO 2P (15-125 A) branch circuit breaker. Includes a retaining kit.		QORBGK2C	DE3A

Gounfing 「ristruments

Features

- Low Power Consumption
- Solid State Electronic Drive Circuit
- Quartz-Crystal for Accurate Timing
- Non-reset
- UL/cUL Recognized, CE \& RoHS Compliant
- High Impact, Tamperproof Plastic Case
- IP65
- Indicates Operating Time in Hours and Tenths
- No Battery Back-Up Required
- Quiet operation
- MADE IN THE U.S.A.

ENM's Series T50 electronic AC hour meter is a low cost reliable hour meter incorporating the latest state-of-the-art in electronics. It's quartz-crystal time base insures accurate long term time-keeping. A reliable electromechanical wheel-type indicator is used to store accumulated hours.
This compact tamperproof meter is sealed against the environment to provide years of service.
The T50 elapsed time indicator was designed for use on test and recording equipment, for providing maintenance control, for establishing warranty programs, for measuring machine utilization and production time, or for any application where time-in-use is to be determined.

Specifications	
Time Scale:	6-digits 99,999.9 Hours Automatic recycle to zero
Figures:	$\begin{aligned} & \text { Hours - White on black } \\ & \text { Tenths - Red on white } \\ & \text { Height - } 0.140^{\prime \prime} \end{aligned}$
Operation Voltage:	$\begin{aligned} & 230,115,48,24 \mathrm{VAC} \pm 10 \% \\ & 50 / 60 \mathrm{~Hz} \\ & \text { Other voltage available } \end{aligned}$
Power Consumption:	Less than 0.4 Watts
Accuracy:	Better than $\pm 0.02 \%$ over entire range
Temperature:	$-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
Vibration Resistance:	Withstands $10-80 \mathrm{~Hz}$ at 20g's max. (SAE J1378)
Shock:	55 g at 9-13 ms (SAE J1378)
Humidity:	95\% (SAE J1378)
Terminations:	1/4" male blade terminals
Configuration:	Round SAE Bezel with new push-on retaining ring Round 3-Hole Bezel

PUSH-ON RETAINING RING

(T50 E)

PUSH-ON RETAINIG RING

2013 ENM Co.®

LIMITED WARRANTY

ENM Company resettable electromechanical counters are warranted to the consumer to be free from defects in material and workmanship for a period of 3 years. All ENM products which fall within the warranty period due to defects in material or workmanship will be repaired or replaced, at ENM's option, without charge to the consumer when returned with proof of purchase to any authorized ENM dealer in the United States, transportation charges prepaid, provided there is no evidence of improper installation, tampering, or other abuse. All implied warranties, including any implied warranty of merchantability or fitness for a particular purpose, shall be limited in duration to the express warranty period specified above. ENM disclaims any liability for consequential damages due to breach of any written or implied warranty on its products. Datasheet information subject to change.

ENM Company

5617 Northwest Highway, Chicago, IL 60646-6I35
(773) 775-8400 • Fax: (773) 775-5968 • Toll Free (888) 372-0465 e-mail: customerservice@enmco.com

(UL) is Two-Hole, Single Barrel Lug

For Use with Stranded Aluminum or Copper Code Conductors

Type LAMB

- Made from high strength, extruded aluminum alloy to provide premium electrical and mechanical performance
- Tin-plated to inhibit corrosion
- Compact design saves space
- Wide wire range-taking capability minimizes inventory requirements
- Inspection window to visually assure full conductor insertion
- Plated steel or aluminum set screw provides high strength, durable electrical contact between conductor and connector
- LAMLB provided with dual set screws for premium clamping of conductor to connector for heavy duty applications
- UL Listed and CSA Certified for use up to 600 V and UL temperature rated $90^{\circ} \mathrm{C}$
- Available with NEMA hole sizes and spacing

Figure 1

Figure 2

	Part Number	Figure No.	Conductor Size Range	Stud Hole Size (In.)	Stud Hole Spacing (In.)	Hex Key Size (In.)	Figure Dimensions (In.)					Std. Pkg. Qty.
							L	W	H	T	P	
-	LAMB350-12-6Y	1	\#6 AWG - 350 kcmil	1/2	1.75	5/16	4.19	1.13	1.28	0.28	3.05	6
-	LAMB600-12-3Y	1	\#2 AWG - 600 kcmil	1/2	1.75	1/2	4.69	1.60	1.57	0.44	3.31	3
-	LAMLB1000-12-3*	2	$500-1000 \mathrm{kcmil}$	1/2	1.75	1/2	6.19	1.63	1.88	0.56	3.44	3

The use of Panduit oxide inhibiting joint compound (CMP-100) is recommended for pad to pad and conductor connections. See page D2.155.
*UL Listed and CSA Certified.
uNEMA hole sizes and spacing.

-U1 Us One-Hole, Two-Barrel Lug

For Use with Stranded Aluminum or Copper Code Conductors

Type LAM2A

- Dual barrel provides termination of two conductors
- Made from high strength, extruded aluminum alloy to provide premium electrical and mechanical performance
- Tin-plated to inhibit corrosion
- Wide wire range-taking capability minimizes inventory requirements
- Inspection window to visually assure full conductor insertion

- Plated steel or aluminum set screw provides high strength, durable electrical contact between conductor and connector
- UL Listed and CSA Certified for use up to 600 V and UL temperature rated $90^{\circ} \mathrm{C}$
- Available with NEMA hole sizes and spacing

	Conductor Size Range	Stud Hole Size (In.)	Hex Key Size (In.)	Figure Dimensions (In.)						Std. Pkg. Qty.
Part Number				L	W	H	T	P	M	
LAM2A1/0-14-6Y	\#14 AWG - 1/0 AWG	1/4	**	1.47	1.13	0.78	0.19	0.85	1.13	6
LAM2A2/0-14-6Y	\#14 AWG - 2/0 AWG	1/4	3/16	1.47	1.20	0.78	0.19	0.85	1.20	6
LAMEAR250-so-6Y	\#6 AWG - 250 kcmil	3/8	3/8	2.56	1.50	1.19	0.25	1.56	1.64	6
LAM2A350-12-6Y	\#6 AWG - 350 kcmil	1/2	5/16	2.87	1.73	1.25	0.25	1.74	1.91	6
LAM2A600-12-6Y*	\#2 AWG - 600 kcmil	1/2	3/8	3.19	2.00	1.56	0.44	1.81	2.38	6
LAM2A1000-58-6Y*	500 kcmil - 1000 kcmil	5/8	3/8	3.50	3.50	1.94	0.50	1.88	3.50	6

The use of Panduit oxide inhibiting joint compound (CMP-100) is recommended for pad to pad and conductor connections. See page D2.155.
*UL Listed and CSA Certified.
**Uses slotted head set screw.

Tiㅇ․ (\in Panduc Type F Narrow Slot Wiring Duct

- Narrow slot/finger design provides more slots to fit the spacing of - Conforms with NFPA 79-2007 section 13.3.1 requirement
high-density terminal blocks and other hardware
- Material: Lead-free PVC
- UL recognized continuous use temperature: $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$
- UL 94 flammability rating of V-0

Base Part Number	Duct Size (W x H)*		Slot Width		Cover Part Number	Std. Pkg. Qty.	Base Ctn. Qty.	Cover Ctn. Qty.
	In.	mm	In.	mm				
F.5X.5LG6	0.69×0.60	17.5×15.2	0.20	5.0	C.5LG6	6	120	120
F.5X1LG6	0.69×1.06	17.5×26.9	0.20	5.0	C.5LG6	6	120	120
F.75X.75LG6	0.93×0.82	23.6×20.9	0.20	5.0	C.75LG6	6	120	120
F.75X1.5LG6	0.93×1.57	23.6×39.9	0.20	5.0	C.75LG6	6	120	120
F1X1LG6	1.26×1.13	32.0×28.7	0.20	5.0	C1LG6	6	120	120
F1X1.5LG6	1.26×1.62	32.0×41.1	0.20	5.0	C1LG6	6	120	120
F1X2LG6	1.26×2.12	32.0×53.8	0.20	5.0	C1LG6	6	120	120
F1X3LG6	1.26×3.12	32.0×79.2	0.20	5.0	C1LG6	6	120	120
F1X4LG6	1.26×4.10	32.0×104.1	0.20	5.0	C1LG6	6	60	120
F1.5X1LG6	1.75×1.12	44.5×28.4	0.20	5.0	C1.5LG6	6	120	120
F1.5X1.5LG6	1.75×1.62	44.5×41.1	0.20	5.0	C1.5LG6	6	120	120
F1.5X2LG6	1.75×2.12	44.5×53.8	0.20	5.0	C1.5LG6	6	120	120
F1.5X3LG6	1.75×3.12	44.5×79.2	0.20	5.0	C1.5LG6	6	120	120
F1.5X4LG6	1.75×4.10	44.5×104.1	0.20	5.0	C1.5LG6	6	60	120
F2X1LG6	2.25×1.12	57.2×28.4	0.20	5.0	C2LG6	6	120	120
F2X1.5LG6	2.25×1.62	57.2×41.1	0.20	5.0	C2LG6	6	120	120
F2X2LG6	2.25×2.12	57.2×53.8	0.20	5.0	C2LG6	6	120	120
F2X3LG6	2.25×3.12	57.2×79.2	0.20	5.0	C2LG6	6	60	120
F2X4LG6	2.25×4.10	57.2×104.1	0.20	5.0	C2LG6	6	60	120
F2X5LG6	2.25×5.10	57.2×129.5	0.20	5.0	C2LG6	6	60	120
F2.5X3LG6	2.75×3.12	69.9×79.2	0.20	5.0	C2.5LG6	6	120	120
F3X1LG6	3.25×1.12	82.6×28.4	0.20	5.0	C3LG6	6	120	120
F3X2LG6	3.25×2.12	82.6×53.8	0.20	5.0	C3LG6	6	120	120
F3X3LG6	3.25×3.12	82.6×79.2	0.20	5.0	C3LG6	6	60	120
F3X4LG6	3.25×4.10	82.6×104.1	0.20	5.0	C3LG6	6	60	120
F3X5LG6	3.25×5.10	82.6×129.5	0.20	5.0	C3LG6	6	60	120
F4X2LG6	4.25×2.12	108.0×53.8	0.20	5.0	C4LG6	6	60	120
F4X3LG6	4.25×3.12	108.0×79.2	0.20	5.0	C4LG6	6	60	120
F4X4LG6	4.25×4.10	108.0×104.1	0.20	5.0	C4LG6	6	60	120
F4X5LG6	4.25×5.10	108.0×129.5	0.20	5.0	C4LG6	6	60	120
F6X4LG6	6.25×4.15	158.8×105.4	0.20	5.0	C6LG6	6	60	120

Part number shown for LG (Light Gray). For other color availability see color selection guide, page C1.48.
Base and cover sold separately.
*"H" dimension includes duct and cover.

Multiple slot restrictors present with 2 " and greater duct wall height.
 To order cover with protective film
add "-F" to part number. 6" cover
not available with film. To order cover with protective film
add "-F" to part number. 6" cover
not available with film. To order cover with protective film
add "-F" to part number. 6" cover
not available with film.

for flame retardant material

- Provided with mounting holes
- Base and cover length is 6 feet

NEW!

Lockout/

Tagout
\& Safety
Solutions

Product image

Klippon® Connect with clamping yoke Technology

The high reliability and variety of designs of the terminal blocks with clamping yoke connections make planning easer and optimises operational safety. Klippon® ${ }^{\circledR}$ Connect provides a proven response to a range of different requirements.

General ordering data

Version	Feed-through terminal, Screw connection, $4 \mathrm{~mm}^{2}$, 800 V .32 A, dark beige
Order No.	1020100000
Type	4008190150617
GTIN (EAN)	$100 \mathrm{pc}(\mathrm{s})$.
Oty.	

WDU 4
Weidmüller Interface GmbH \& Co. KG
Klingenbergstraße 26
D-32758 Detmold
Germany

Technical data

Dimensions and weights

Depth	46.5 mm	Depth (inches)	1.831 inch
Depth including DIN rail	47 mm	Height	60 mm
Height (inches)	2.362 inch	Net weight	9.57 g
Weight	9 g	Width	6.1 mm
Width (inches)	0.24 inch		
Temperatures			
Storage temperature	$-25^{\circ} \mathrm{C} . .55{ }^{\circ} \mathrm{C}$	Operating temperature range	For operating temperature range see EC Design Test Certificate / IEC ExCertificate of Conformity
Continuous operating temp., min.	$-60^{\circ} \mathrm{C}$	Continuous operating temp., max.	$130{ }^{\circ} \mathrm{C}$

Material data

Material			
	Wemid	Colour	dark beige

Rating data IECEx/ATEX

Certificate No. (ATEX)	DEMK014ATEX1338U	Certificate No. (IECEX)	IECEXULD14.0005U
Max. voltage (ATEX)	690 V	Current (ATEX)	32 A
Wire cross section max. (ATEX)	$4 \mathrm{~mm}^{2}$	Max. voltage (IECEX)	690 V
Current (IECEX)	32 A	Wire cross section max. (IECEX)	$4 \mathrm{~mm}^{2}$
Operating temperature range	For operating temperature range see EC Design Test Certificate / IEC ExCertificate of Conformity	Marking EN 60079-7	Ex eb II C Gb
Ex 2014/34/EU label	II 2 G D		

System specifications

Version	Screw connection, for plug-in cross-connector, for screwable crossconnection, One end without connector	End cover plate required	Yes
Number of potentials	1	Number of levels	1
Number of clamping points per level	2	Number of potentials per tier	1
Levels cross-connected internally	No	PE connection	No
Rail	TS 35	N -function	No
PE function	No	PEN function	No
2 clampable conductors (H05V/H07V) with equal cross-section (rated connection)			
Cross-section for connected wire, solid, two clampable wires, max.	$2.5 \mathrm{~mm}^{2}$	Cross-section for connected wire, solid, two clampable wires, min.	$0.5 \mathrm{~mm}^{2}$
Wire connection cross section, finely stranded with wire-end ferrules DIN 46228/1, 2 clampable wires, max.	$1.5 \mathrm{~mm}^{2}$	Wire connection cross section, finely stranded with wire-end ferrules DIN 46228/1, 2 clampable wires, min.	$0.5 \mathrm{~mm}^{2}$
Wire connection cross section, finely stranded, two clampable wires, min.	$0.5 \mathrm{~mm}^{2}$	Wire cross-section, finely stranded, two clampable wires, max.	$1.5 \mathrm{~mm}^{2}$

WDU 4
Weidmüller Interface GmbH \& Co. KG
Klingenbergstraße 26
D-32758 Detmold
Germany

Technical data

www.weidmueller.com

Additional technical data

Explosion-tested version	Yes	Number of similar terminals	1
Open sides	right	Type of mounting	Snap-on
CSA rating data			
Certificate No. (CSA)	200039-1057876	Current size B (CSA)	35 A
Current size C (CSA)	35 A	Voltage size C (CSA)	600 V
Wire cross section max. (CSA)	10 AWG	Wire cross section min. (CSA)	26 AWG

Conductors for clamping (rated connection)

Blade size Clampable conductor	$0.6 \times 3.5 \mathrm{~mm}$	Screw connection	
	Connection specification		
	Cross-section for conductor connection	Type	solid, H05(07) V-U
		min.	$0.5 \mathrm{~mm}^{2}$
		max.	$6 \mathrm{~mm}^{2}$
		nominal	$4 \mathrm{~mm}^{2}$
	wire end ferrule	Stripping length	min. 10 mm
			max. 10 mm
			nominal 10 mm
		Tightening torque	min. $\quad 0.5 \mathrm{Nm}$
			max. $\quad 1 \mathrm{Nm}$
		Recommended wireend ferrule	
	Connection specification	Screw connection	
	Cross-section for conductor connection	Type	stranded, H07V-R
		min.	$1.5 \mathrm{~mm}^{2}$
		max.	$6 \mathrm{~mm}^{2}$
		nominal	$4 \mathrm{~mm}^{2}$
	wire end ferrule	Stripping length	min. 10 mm
			max. 10 mm
			nominal 10 mm
		Tightening torque	min. $\quad 0.5 \mathrm{Nm}$
			max. $\quad 1 \mathrm{Nm}$
		Recommended wireend ferrule	
	Connection specification	Screw connection	
	Cross-section for conductor connection	Type	flexible, H05(07) V-K
		min.	0.5 Nm
		max.	6 Nm
		nominal	4 Nm
	wire end ferrule	Stripping length	min. 10 mm
			max. 10 mm
			nominal 10 mm
		Tightening torque	min. $\quad 0.5 \mathrm{Nm}$
			max. $\quad 1 \mathrm{Nm}$
		Recommended wireend ferrule	
Clamping range, max.	$6 \mathrm{~mm}^{2}$		
Clamping range, min.	$0.13 \mathrm{~mm}^{2}$		
Clamping screw	M 3		
Connection cross-section, stranded, max.	$6 \mathrm{~mm}^{2}$		
Connection cross-section, stranded, min. 1.5 mm²			
Connection direction	on side		

WDU 4

Weidmüller Interface GmbH \& Co. KG
Klingenbergstraße 26
D-32758 Detmold
Germany
Technical data
www.weidmueller.com

Gauge to IEC 60947-1	A4
Number of connections	2
Stripping length	10 mm
Tightening torque, max.	1 Nm
Tightening torque, min.	0.5 Nm
Torque level with DMS electric screwdriver	2
Twin wire-end ferrules, max.	$2.5 \mathrm{~mm}^{2}$
Twin wire-end ferrules, min.	$0.5 \mathrm{~mm}^{2}$
Type of connection	Screw connection
Wire connection cross section AWG, max.	AWG 10
Wire connection cross section AWG, min.	AWG 26
Wire connection cross section, finely stranded, max.	$6 \mathrm{~mm}^{2}$
Wire connection cross-section, finely stranded with wire-end ferrules DIN 46228/1, max.	$4 \mathrm{~mm}^{2}$
Wire connection cross-section, finely stranded with wire-end ferrules DIN 46228/1, min.	$0.5 \mathrm{~mm}^{2}$
Wire connection cross-section, finely stranded with wire-end ferrules DIN 46228/4, max.	$4 \mathrm{~mm}^{2}$
Wire connection cross-section, finely stranded with wire-end ferrules DIN 46228/4, min.	$0.5 \mathrm{~mm}^{2}$
Wire connection cross-section, solid core, max.	$6 \mathrm{~mm}^{2}$
Wire connection cross-section, solid core, min.	$0.5 \mathrm{~mm}^{2}$

General

Rail	TS 35	Standards	IEC 60947-7-1
Wire connection cross section AWG, max.	AWG 10	Wire connection cross section AWG, min.	AWG 26

Rating data

UL rating data

Certificate No. (UR)	E60693	Conductor size Factory wiring max. (UR)	10 AWG
Conductor size Factory wiring min. (UR)	26 AWG	Conductor size Field wiring max. (UR)	10 AWG
Conductor size Field wiring min. (UR)	22 AWG	Current size C (UR)	35 A
UL_current_Print	35 A	UL_voltage_Print	600 V
UL_wire_max_Print	10 AWG	UL_wire_min_Print	26 AWG
Voltage size C (UR)	600 V		

Key features:

- 20 time ranges and 10 timing functions
- Time delays up to 600 hours
- Space-saving package
- High repeat accuracy of $\pm 0.2 \%$
- ON and timing OUT LED indicators
- Standard 8- or 11-pin and 11-blade termination
- 2 form C delayed output contacts

RTE Series - AnalogTimers

- 10A Contact Rating

Cert. No. E9950913332316 (EMC, RTE) Cert. No. BL960813332355 (LVD, RTE)

General Specifications

Solid state CMOS Circuit
Multi-Mode

Contact Ratings

Contact Configuration		2 Form C, DPDT (Delay output)
Allowable Voltage / Allowable Current		240 V AC, 30V DC / 10A
Maximum Permissible Operating Frequency		1800 cycles per hour
Rated Load	Resistive	10A 240V AC, 30V DC
	Inductive	7A 240V AC, 30V DC
	Horse Power Rating	1/6 HP 120V AC, 1/3 HP 240V AC
Life	Electrical	500,000 op. minimum (Resistive)
	Mechanical	50,000,000 op. minimum

[^12]
Part Numbering Guide

RTE series part numbers are composed of 4 part number codes. When ordering a RTE series part, select one code from each category. Example: RTE-P1AF20

(2) Terminal

(3) Function Group

(4) Input Voltage

Part Numbers: RTE Series

	Description	Part Number Code	Remarks
(1) Series	RTE series	RTE	For internal circuits, see next page.
(2) Terminal Style	Pin	P	
	Blade	B	Select one only.
(3) Function Group	ON-delay, interval, cycle OFF, cycle ON		Each function group has different timing functions.
	ON-delay, cycle OFF, cycle ON, signal ON/ OFF delay, OFF-delay, one-shot	2	See page 832.
(4) Input Voltage	100 to 240V AC($50 / 60 \mathrm{~Hz}$)	AF20	
	24 V AC(50/60Hz)/24V DC	AD24	
	12V DC	D12	

Time Range Determined by Time Range Selector and Dial Selector

	Dial	0-1	0-3	0-10	0-30	0-60
$\begin{aligned} & \mathscr{0} \\ & \stackrel{\rightharpoonup}{\mp} \\ & \stackrel{\rightharpoonup}{x} \end{aligned}$	Second	$0.1 \mathrm{sec}-1 \mathrm{sec}$	$0.1 \mathrm{sec}-3 \mathrm{sec}$	$0.2 \mathrm{sec}-10 \mathrm{sec}$	$0.6 \mathrm{sec}-30 \mathrm{sec}$	$1.2 \mathrm{sec}-60 \mathrm{sec}$
	Minute	$1.2 \mathrm{sec}-1 \mathrm{~min}$	$3.6 \mathrm{sec}-3 \mathrm{~min}$	$12 \mathrm{sec}-10 \mathrm{~min}$	$36 \mathrm{sec}-30 \mathrm{~min}$	$1.2 \mathrm{~min}-60 \mathrm{~min}$
	Hour	$1.2 \mathrm{~min}-1 \mathrm{hr}$	3.6 min - 3 hr	$12 \mathrm{~min}-10 \mathrm{hr}$	$36 \mathrm{~min}-30 \mathrm{hr}$	$1.2 \mathrm{hr}-60 \mathrm{hr}$
	10 Hours	$12 \mathrm{~min}-10 \mathrm{hr}$	36 min - 30 hr	$2 \mathrm{hr}-100 \mathrm{hr}$	$6 \mathrm{hr}-300 \mathrm{hr}$	$12 \mathrm{hr}-600 \mathrm{hr}$

Timing Diagrams

RTE-P1,
 RTE-P1, B1

1. RTE-B1: Do not apply voltage to terminals \#2, \#5 \& \#8.
2. IDEC sockets are as follows: RTE-P1: SR2P-06* pin type socket, RTE-B1: SR3B-05* blade type socket, (${ }^{*}$-may be followed by suffix letter $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or U).

A: ON-Delay 1 (power start)
Set timer for desired delay, apply power to coil. Contacts transfer after preset time has elapsed, and remain in transferred position until timer is reset. Reset occurs with removal of power.

C: Cycle 1 (power start, OFF first)
Set timer for desired delay, apply power to coil. First transfer of contacts occurs after preset delay has elapsed, after the next elapse of preset delay contacts return to original position. The timer now cycles between on and off as long as power is applied (duty ratio 1:1).

B: Interval (power start)
Set timer for desired delay, apply power to coil. Contacts transfer immediately, and return to original position after preset time has elapsed. Reset occurs with removal of power.

C: Cycle 3 (power start, ON first)
Functions in same manner as Mode C, with the exception that first transfer of contacts occurs as soon as power is applies. The ratio is 1:1. Time $\mathrm{On}=$ Time Off

Timing Diagrams con't

RTE-P2, -B2

RTE-P2

RTE-B2
external
control
start
signtral start

A: ON-Delay 2 (signal start)
When a preset time has elapsed after the start input turned on while power is on, the NO output contact goes on.

C: Cycle 4 (signal start, ON first)
When the start input turns on while power is on, the NO contact goes on. The output oscillates at a preset cycle (duty ratio 1:1).

E: Signal OFF-Delay
When power is turned on while the start input is on, the NO output contact goes on. When a preset time has elapsed after the start input turned off, the NO output contact goes off.

1. RTE-P2: Do not apply voltage to terminals \#5, \#6 \& \#7
2. RTE-B2: Do not apply voltage to terminals \#2, \#5 \& \#8.
3. IDEC sockets are as follows: RTE-P2: SR3P-05* pin type socket, RTE-B2: SR3B-05* blade type socket, (*-may be followed by suffix letter $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or U).

B: Cycle 2 (signal start, OFF first)
When the start input turns on while power is on, the output oscillates at a preset cycle (duty ratio 1:1), starting while the NO contact off.

D: Signal ON/OFF-Delay
When the start input turns on while power is on, the NO output contact goes on. When a preset time has elapsed while the start input remains on, the output contact goes off. When the start input turns off, the NO contact goes on again. When a preset time has elapsed after the start input turned off, the NO contact goes off.

F: One-Shot (signal start)
When the start input turns on while power is on, the NO output contact goes on. When a preset time has elapsed, the NO output contact goes off.

Installation of Hold-Down Springs DIN Rail Mount Socket

Instructions

Switch Settings

(1)Operator Mode Selector (2)Scale Selector (3)Time Range Selector

1. Turn the selectors securely using a flat screwdriver 4 mm wide (maximum).
Note that incorrect setting may cause malfunction. Do not turn the selectors beyond their limits.
2. Since changing the setting during timer operation may cause malfunction, turn power off before changing.

Safety Precautions

Special expertise is required to use Electronic Timers.

- All Electronic Timers are manufactured under IDEC's rigorous quality control system, but users must add a backup or fail safe provision to the control system when using the Electronic Timer in applications where heavy damage or personal injury may occur should the Electronic Timer fail.
- Install the Electronic Timer according to instructions described in this catalog.
- Make sure that the operating conditions are as described in the specifications. If you are uncertain about the specifications, contact IDEC in advance.
- In these directions, safety precautions are categorized in order of importance under Warning and Caution.

Warnings

Warning notices are used to emphasize that improper operation may cause severe personal injury or death.

- Turn power off to the Electronic timer before starting installation, removal, wiring, maintenance, and inspection on the Electronic Timer.
- Failure to turn power off may cause electrical shocks or fire hazard.
- Do not use the Electronic Timer for an emergency stop circuit or interlocking circuit. If the Electronic Timer should fail, a machine malfunction, breakdown, or accident may occur.

Caution

Caution notices are used where inattention might cause personal injury or damage to equipment.

- The Electronic Timer is designed for installation in equipment. Do not install the Electronic Timer outside equipment.
- Install the Electronic Timer in environments described in the specifications. If the Electronic Timer is used in places where it will be subjected to high-temperature, high-humidity, condensation, corrosive gases, excessive vibrations, or excessive shocks, then electrical shocks, fire hazard, or malfunction could result.
- Use an IEC60127-approved fuse and circuit breaker on the power and output line outside the Electronic Timer.
- Do not disassemble, repair, or modify the Electronic Timer.
- When disposing of the Electronic Timer, do so as industrial waste.

Accessories

DIN Rail Mounting Accessories

DIN Rail/Surface Mount Sockets and Hold-Down Springs

Panel Mounting Accessories
Flush Panel Mount Adapter and Sockets that use an Adapter

Dimensions

Panel Mount Adapter
RTE Timer, 8-Pin and 11-Pin with SR6P-S08 or SR6P-S11

RTE Timer, 8-Pin with SR6P-M08G

General Instructions for AllTimer Series

Load Current

With inductive, capacitive, and incandescent lamp loads, inrush current more than 10 times the rated current may cause welded contacts and other undesired effects. The inrush current and steady-state current must be taken into consideration when specifying a timer.

Contact Protection

Switching an inductive load generates a counter-electromotive force (back EMF) in the coil. The back EMF will cause arcing, which may shorten the contact life and cause imperfect contact. Application of a protection circuit is recommended to safeguard the contacts.

Temperature and Humidity

Use the timer within the operating temperature and operating humidity ranges and prevent freezing or condensation. After the timer has been stored below its operating temperature, leave the timer at room temperature for a sufficient period of time to allow it to return to operating temperatures before use.

Environment

Avoid contact between the timer and sulfurous or ammonia gases, organic solvents (alcohol, benzine, thinner, etc.), strong alkaline substances, or strong acids. Do not use the timer in an environment where such substances are prevalent. Do not allow water to run or splash on the timer.

Vibration and Shock

Excessive vibration or shocks can cause the output contacts to bounce, the timer should be used only within the operating extremes for vibration and shock resistance. In applications with significant vibration or shock, use of hold down springs or clips is recommended to secure a timer to its socket.

Time Setting

The time range is calibrated at its maximum time scale; so it is desirable to use the timer at a setting as close to its maximum time scale as possible. For a more accurate time delay, adjust the control knob by measuring the operating time with a watch before application.

Input Contacts

Use mechanical contact switch or relay to supply power to the timer. When driving the timer with a solid-state output device (such as a two-wire proximity switch, photoelectric switch, or solid-state relay), malfunction may be caused by leakage current from the solid-state device. Since AC types comprise a capacitive load, the SSR dielectric strength should be two or more times the power voltage when switching the timer power using an SSR.

Generally, it is desirable to use mechanical contacts whenever possible to apply power to a timer or its signal inputs. When using solid state devices, be cautious of inrushes and back-EMF that may exceed the ratings on such devices. Some timers are specially designed so that signal inputs switch at a lower voltage than is used to power the timer (models designated as " B " type).

Timing Accuracy Formulas

Timing accuracies are calculated from the following formulas:

Repeat Error	$= \pm \frac{1 \times \text { Maximum Measured Value - Minimum Measured Value } \times 100 \%}{2 \text { Maximum Scale Value }}$
Voltage Error	$= \pm \frac{\operatorname{Tv}-\operatorname{Tr} \times 100 \%}{\operatorname{Tr}}$

Tv: Average of measured values at voltage V
Tr : Average of measured values at the rated voltage
Temperature Error $\quad= \pm \frac{\mathrm{Tt}-\mathrm{T} 20 \times 100 \%}{\mathrm{~T} 20}$
Tt: Average of measured values at ${ }^{\circ} \mathrm{C}$
T20: Average of measured values at $20^{\circ} \mathrm{C}$
Setting Error $\quad= \pm \frac{\text { Average of Measured Values - Set Value } \times 100 \%}{\text { Maximum Scale Value }}$

RR Series Power Relays

Key features:

- SPDT through 3PDT, 10A contacts
- Midget power type relays
- Available in pin and blade terminal styles.
- Options include an indicator, check button for test operations and side flange.
- DIN rail, surface and panel mount sockets are available for a wide a variety of mounting applications.

CEUS STOV CE

Part Number Selection

 mounted using DIN rail BNDN1000.

Ordering Information

When ordering, specify the Part No. and coil voltage code:

$$
\text { (example) } \frac{\text { RR3B-U }}{\text { Part No. }} \quad \frac{\text { AC120V }}{\square_{\text {Coil Voltage Code }}}
$$

Contact	Model	Pin Terminal	Blade Terminal*	Coil Voltage Code (Standard Stock Items in Bold)
SPDT	Standard	-	RR1BA-U \square	AC6V, AC12V, AC24V, AC1 AC120V AC240V, DC6V, DC12V, DC24V, DC48V, DC110V
	With Indicator		RR1BA-UL \square	
	With Check Button		RR1BA-UC \square	
	With Indicator and Check Button		RR1BA-ULC \square	
	Side Flange Model		RR1BA-US \square	
DPDT	Standard	RR2P-U \square	RR2BA-U \square	
	With Indicator	RR2P-UL \square	RR2BA-UL \square	
	With Check Button	RR2P-UC \square	RR2BA-UC \square	
	With Indicator and Check Button	RR2P-ULC \square	RR2BA-ULC \square	
	Side Flange Model	-	RR2BA-US \square	
3PDT	Standard	RR3PA-U \square	RR3B-U \square	
	With Indicator	RR3PA-UL \square	RR3B-UL	
	With Check Button	RR3PA-UC \square	-	
	With Indicator and Check Button	RR3PA-ULC \square	RR3B-ULC \square	
	Side Flange Model	-	RR3B-US \square	

*Blade type not TUV tested or CE marked.
Side flange model mounts directly to panel with no socket required.

Sockets

Relays	Standard DIN Rail Mount	Finger-safe DIN Rail Mount	Through Panel Mount
RR2P	$\begin{aligned} & \text { SR2P-05 } \\ & \text { SR2P-06 } \end{aligned}$	SR2P-05C	SR2P-51
RR3PA	$\begin{aligned} & \text { SR3P-05 } \\ & \text { SR3P-06 } \end{aligned}$	SR3P-05C	SR3P-51
RR1BA DROBA RR3B	SR3B-05	-	SR3B-51

Appearance	Description	Relay	For DIN Mount Socket	For Through Panel \& PCB Mount Socket	
	Pullover Wire Spring	RR2P	SR2B-02F1	SR3P-01F1	
		RR3PA	SR3B-02F1		
		RR1BA, RR2BA, RR3B	SR3B-02F1	SR3B-02F1	
	Leaf Spring (side latch)	RR2P, RR3PA	SFA-203	-	
Accessories					
Item	Appearance		Use with	Part No.	Remarks
Aluminum DIN Rail (1 meter length)			All DIN rail sockets	BNDN1000	The BNDN1000 is designed to accommodate DIN mount sockets. Made of durable extruded aluminum, the BNDN1000 measures 0.413 $(10.5 \mathrm{~mm})$ in height and $1.37(35 \mathrm{~mm})$ in width (DIN standard). Standard length is $39^{\prime \prime}(1,000 \mathrm{~mm})$.
DIN Rail End Stop			DIN rail	BNL5	9.1 mm wide.
Replacement Hold-Down Spring Anchor			Horseshoe clip for sockets SR3B-05, SR2P-06, SR3P-06	Y778-011	For use on DIN rail mount socket when using pullover wire hold down spring. 2 pieces included with each socket.
			Chair clip for sockets SR2P-05(C), SR3P-05(C)	Y703-102	

Specifications

Contact Material		Silver	
Contact Resistance ${ }^{1}$		$30 \mathrm{~m} \Omega$ maximum	
Minimum Applicable Load		$1 \mathrm{~V} D \mathrm{C}, 10 \mathrm{~mA}$	
Operating Time	2	25 ms maximum	
Release Time	2	25 ms maximum	
Power Consumption (approx.)		AC: 3 VA (50 Hz), $2.5 \mathrm{VA}(60 \mathrm{~Hz})$ DC: 1.5 W	
Insulation Resistance		$100 \mathrm{M} \Omega$ minimum (500V DC megger)	
Dielectric Strength	Pin Terminal	Between live and dead parts:	1500 V AC, 1 minute
		Between contact and coil:	1500 V AC, 1 minute
		Between contacts of different poles:	1500V AC, 1 minute
		Between contacts of the same pole:	1000V AC, 1 minute
	Blade Terminal	Between live and dead parts:	2000V AC, 1 minute
		Between contact and coil:	2000V AC, 1 minute
		Between contacts of different poles:	2000V AC, 1 minute
		Between contacts of the same pole:	1000V AC, 1 minute
Operating Frequency		Electrical: 1800 operat	h maximum
		Mechanical: $\quad 18,000$ oper	/h maximum
Vibration Resistance		Damage limits: $\quad 10$ to 55 Hz ,	itude 0.5 mm
		Operating extremes: 10 to 55 Hz , amplitude 0.5 mm	
Shock Resistance		Damage limits: $\quad 1000 \mathrm{~m} / \mathrm{s}^{2}(1$	
		Operating extremes: $\quad 100 \mathrm{~m} / \mathrm{s}^{2}(10 \mathrm{G})$	
Mechanical Life		10,000,000 operations	
Electrical Life		200,000 operations (220V AC, 5A)	
Operating Temperature ${ }^{3}$		-25 to $+40^{\circ} \mathrm{C}$ (no freezing)	
Operating Humidity		5 to 85\% RH (no condensation)	
Weight (approx.) (Standard type)		RR2P: 90g, RR3PA: 96g, RR1BA/RR2BA/RR3B: 82 g	

Coil Ratings

UL Ratings

Voltage	Resistive	General use	Horse Power Rating
240 V AC	10 A	7 A	$1 / 3 \mathrm{HP}$
120 V AC	10 A	7.5 A	$1 / 4 \mathrm{HP}$
30 V DC	10 A	7 A	-

CSA Ratings

Voltage	Resistive	General use
240 V AC	10 A	7 A
120 V AC	10 A	7.5 A
100 V DC	-	0.5 A
30 V DC	10 A	7.5 A

Contact Ratings

		aximum Con	ct Capacity		
	Allowable	tact Power		Rated Load	
Current	Resistive Load	Inductive Load	Voltage (V)	Res. Load	Ind. Load
10A	1650VA AC 300W DC	$\begin{aligned} & \text { 1100VA AC } \\ & 150 \mathrm{~W} \text { DC } \end{aligned}$	110 AC	10A	7.5A
			220 AC	7.5 A	5A
			30 DC	10A	5A

Note: Inductive load for the rated load - $\cos \emptyset=0.3, L / R=7 \mathrm{~ms}$

TÜV Ratings

Voltage	
240 V AC	10 A
30 V DC	10 A

Socket Specifications

	Relays	Terminal	Electrical Rating	Wire Size	Torque
DIN Rail Sockets	SR2P-05	M3 screw with captive wire clamp	$300 \mathrm{~V}, 10 \mathrm{~A}$	Maximum 2 - \#12 AWG	9-11.5in•lbs
	SR2P-05C	M3 screw with captive wire clamp, fingersafe	$300 \mathrm{~V}, 10 \mathrm{~A}$	Maximum 2-\#12 AWG	9-11.5in 0 lbs
	SR2P-06	M3 screw with captive wire clamp	$300 \mathrm{~V}, 10 \mathrm{~A}$	Maximum 2-\#12 AWG	9-11.5in 0 lbs
	SR3P-05	M3 screw with captive wire clamp	$300 \mathrm{~V}, 10 \mathrm{~A}$	Maximum 2-\#12 AWG	9-11.5in \bullet lbs
	SR3P-05C	M3 screw with captive wire clamp, fingersafe	$300 \mathrm{~V}, 10 \mathrm{~A}$	Maximum 2 - \#12 AWG	9-11.5in•lbs
	R3P-06	M3 screw with captive wire clamp	$300 \mathrm{~V}, 10 \mathrm{~A}$	Maximum 2-\#12 AWG	9-11.5in•lbs
	SR3B-05	M3 screw with captive wire clamp	300V, 15A (10A)* **CSA rating)	Maximum 2-\#12 AWG	9-11.5in \bullet lbs
Through Panel Mount Sockets	SR2P-51	Solder	$300 \mathrm{~V}, 10 \mathrm{~A}$	-	-
	SR3P-51	Solder	$300 \mathrm{~V}, 10 \mathrm{~A}$	-	-
	SR3B-51	Solder	$300 \mathrm{~V}, 10 \mathrm{~A}$	-	-

Characteristics (Reference Data)

Electrical Life Curves

AC Load

Maximum Switching Capacity

Internal Connection (View from Bottom)
Standard Type
RR2P-U

With Indicator (-UL type)
(

Continuous Load Current vs. Operating Temperature Curve (Standard Type, With Check Button, and Side Flange Type)

Switches \& Pilot Lights

RR2P-U/RR2P-UL

Dimensions (mm)

RR3PA-U/RR3PA-UL

RR1BA-U/RR2BA-UL/RR2BA-U RR2BA-UL/RR3B-U/RR3B-UL

Total length from panel surface including relay socket
SR3B-05: 73 (76) max., SR3B-51: 56 (60) max.

Standard DIN Rail Mount Sockets

SR2P-05

SR2P-06

SR3P-05

SR3P-06

Standard DIN Rail Mount Sockets

SR3B-05

Finger-safe DIN Rail Mount Sockets

SR2P-05C

Through Panel Mount Socket

SR2P-51

SR3B-51

SR3P-05C

SR3P-51

Driving Circuit for Relays

1. To ensure correct relay operation, apply rated voltage to the relay coil.
2. Input voltage for the DC coil:

A complete DC voltage is best for the coil power to make sure of stable relay operation. When using a power supply containing a ripple voltage, suppress the ripple factor within 5%. When power is supplied through a rectification circuit, the relay operating characteristics, such as pickup voltage and dropout voltage, depend on the ripple factor. Connect a smoothing capacitor for better operating characteristics as shown below.
3. Leakage current while relay is off:

When driving an element at the same time as the relay operation, special consideration is needed for the circuit design. As shown in the incorrect circuit below, leakage current (lo) flows through the relay coil while the relay is off. Leakage current causes coil release failure or adversely affects the vibration resistance and shock resistance. Design a circuit as shown in the correct example.

Incorrect

4. Surge suppression for transistor driving circuits:

When the relay coil is turned off, a high-voltage pulse is generated, causing a transistor to deteriorate and sometimes to break. Be sure to connect a diode to suppress the back electromotive force. Then, the coil release time becomes slightly longer. To shorten the coil release time, connect a Zener diode between the collector and emitter of the transistor. Select a Zener diode with a Zener voltage slightly higher than the power voltage.

Operating Instructions

Protection for Relay Contacts

1. The contact ratings show maximum values. Make sure that these values are not exceeded. When an inrush current flows through the load, the contact may become welded. If this is the case, connect a contact protection circuit, such as a current limiting resistor.
2. Contact protection circuit:

When switching an inductive load, arcing causes carbides to form on the contacts, resulting in increased contact resistance. In consideration of contact reliability, contact life, and noise suppression, use of a surge absorbing circuit is recommended. Note that the release time of the load becomes slightly longer. Check the operation using the actual load. Incorrect use of a contact protection circuit will adversely affect switching characteristics. Four typical examples of contact protection circuits are shown in the following table:

3. Do not use a contact protection circuit as shown below:
This protection circuit is very effective in arc suppression when
opening the contacts. But, the capacitor is charged while the
contacts are opened. When the contacts are closed, the capacitor
is discharged through the contacts, increasing the possibility of
contact welding.

Generally, switching a DC inductive load is more difficult than switching a DC resistive load. Using an appropriate arc suppressor, however, will improve the switching characteristics of a DC inductive load.

Soldering

1. When soldering the relay terminals, use a soldering iron of 30 to 60 W , and quickly complete soldering (within approximately 3 seconds).
2. Use a non-corrosive rosin flux.

Operating Instructions con't

Other Precautions

1. General notice:

To maintain the initial characteristics, do not drop or shock the relay.
The relay cover cannot be removed from the base during normal operation. To maintain the initial characteristics, do not remove the relay cover

Use the relay in environments free from condensation, dust, sulfur dioxide $\left(\mathrm{SO}_{2}\right)$, and hydrogen sulfide ($\left.\mathrm{H}_{2} \mathrm{~S}\right)$.

Make sure that the coil voltage does not exceed applicable coil voltage range.
2. UL and CSA ratings may differ from product rated values determined by IDEC.
3. Do not use relays in the vicinity of strong magnetic field, as this may affect relay operation.

- Turn off the power to the relay before starting installation, removal, wiring, maintenance, and inspection of the relays. Failure to turn power off may cause electrical shock or fire hazard.
- Observe specifications and rated values, otherwise electrical shock or fire hazard may be caused.
- Use wires of the proper size to meet voltage and current requirements. Tighten the terminal screws on the relay socket to the proper tightening torque.
- Surge absorbing elements on AC relays with RC or DC relays with diode are provided to absorb the back electromotive force generated by the coil. When the relay is subject to an excessive external surge voltage, the surge absorbing element may be damaged. Add another surge absorbing provision to the relay to prevent damage.

Precautions for the RU Relays

- Before operating the latching lever of the RU relay, turn off the power to the RU relay. After checking the circuit, return the latching lever to the original position.
- Do not use the latching lever as a switch. The durability of the latching lever is a minimum of 100 operations.
- When using DC loads on 4PDT relays, apply a positive voltage to terminals of neighboring poles and a negative voltage to the other terminals of neighboring poles to prevent the possibility of short circuits.
- DC relays with a diode have a polarity in the coil terminals. Apply the DC voltage to the correct terminals.

SDSA1175

SDSA1175 and SDSA 3-Phase Surge Protective De
Surgelogic™ SDSA1175 surge protective devices are designed and listed for indoor or outdoor installation and surge suppression for single-phase three-wire 120/240 Vac or two-wire 120 Vac 60 Hz electrical services. This product is ideal for panel builders as well as manufacturers and integrators of instrumentation cabinets for industrial and commercial applications for single-phase power systems. Two SDSA1175 surge protection devices can be installed to provide suppression for 208Y/120 Vac three-phase four-wire services
SurgelogicTM SDSA 3-Phase surge protective devices are designed and listed for indoor or outdoor installation and surge suppression for three-phase electrical services up to 600 Vac . The SDSA 3-Phase series is used extensively in service entrance panels to provide an efficient and economical means of surge suppression and also ideal for point of use applications for that added level of protection.
US and Canadian UL® Listed as Type 1 SPD to the UL 1449 standard. Complies with requirements of NEC ${ }^{\circledR}$ Article 285, CSA 233.1-87, and CSA C22.2 No. 8-M1986 as appropriate.

- LED indicates operational status
- Short circuit current rating 25 kA (SDSA1175), 200 kA (SDSA 3-Phase)
- Suitable for indoor and outdoor applications (NEMA Type 4X rated)

Ounvenient back-nipple mounting

- Optional mounting bracket QOSAMK (for SDSA1175/SDSA1175T)

Table 6.9: SDSA1175 and SDSA 3-Phase Surge Protective Devices

System Voltage	Peak Surge Current Rating per Phase (kA)	Cat. No.
SDSA1175		
120/240 V, 1-phase, 3-wire	36	SDSA1175T
120 V, 1-phase, 2-wire	36	SDSA2040
SDSA 3-Phase	40	SDSA2040D
208Y/120 V, 3-phase, 4-wire [10] [11]	40	SDSA4040
240 V Delta, 3-phase, 3-wire [12] 480Y/277 V, 3-phase, 4-wire [13] [10] 480 V Delta, 3-phase, 3-wire	40	SDSA4040D
600Y/347 V, 3-phase, 4-wire [10] 600 V Delta, 3-phase, 3-wire	40	SDSA3650

Overview

HydroRanger 200 HMI is an ultrasonic level controller for up to six pumps and provides control, differential control, and open channel flow monitoring.

Benefits

- Easy to use HMI display with local four-button programming, menu-driven parameters, and Wizard support for key applications
- English, German, French, Spanish, Chinese, Italian, Portuguese, and Russian texts on the HMI
- Removable terminal blocks for ease of wiring
- Monitors wet wells, weirs, and flumes
- Communication using built-in Modbus RTU via RS 485 and SIMATIC PDM configuration software
- Compatible with SmartLinx system: PROFIBUS DP, PROFINET (cyclic access of process values only), DeviceNet, Modbus TCP/IP, and EtherNet/IP
- Single or dual point level monitoring
- 6 relays
- Auto False-Echo Suppression for fixed obstruction avoidance
- Anti-grease ring/tide mark buildup
- Differential amplifier transceiver for common mode noise rejection and improved signal-to-noise ratio
- Wall and panel mounting options

Application

For water authorities, municipal water, and wastewater plants, HydroRanger 200 HMI is an economical, low-maintenance solution delivering control efficiency and productivity needed to meet today's exacting standards. It offers single point monitoring with all models, and optional dual-point monitoring with 6 relay model. As well, it has digital communications with built-in Modbus RTU via RS 485.
The standard 6 relay HydroRanger 200 HMI will monitor open channel flow and features advanced relay alarming and pump control functions as well as volume conversion. It is compatible with SIMATIC PDM, allowing for PC configuration and set-up. Sonic Intelligence advanced echo-processing software provides increased reading reliability.

HydroRanger 200 HMI uses proven continuous ultrasonic echo ranging technology to monitor water and wastewater of any consistency up to $15 \mathrm{~m}(50 \mathrm{ft})$ in depth. Achievable resolution is 0.1 \% with accuracy to 0.25 \% of range. Unlike contacting devices, HydroRanger 200 HMI is immune to problems caused by suspended solids, harsh corrosives, grease or silt in the effluent, reducing downtime.

- Key Applications: wet wells, flumes/weirs, bar screen control

Technical specifications

Mode of Operation	
Measuring principle	Ultrasonic level measurement
Measuring range	$0.3 \ldots 15 \mathrm{~m}$ (1 ... 50 ft), transducer dependent
Measuring points	1 or 2
Input	
Analog	0 ... 20 mA or 4 ... 20 mA , from alternate device, scalable (6 relay model)
Discrete	10 ... 50 V DC switching level Logical $0 \leq 0.5 \mathrm{~V}$ DC Logical $1=10 \ldots 50 \mathrm{~V}$ DC max. 3 mA
Output	
EchoMax transducer	44 kHz
Ultrasonic transducer	Compatible transducers: ST-H and EchoMax series XPS-10, XPS-15/15F, and XRS-5
Relays ${ }^{1)}$ - Model with 6 relays	Rating 5 A at 250 V AC, non-inductive 4 SPST Form A/2 SPDT Form
mA output - Max. Ioad - Resolution	0 ... 20 mA or 4 ... 20 mA 750Ω, isolated 0.1% of range
Accuracy	
Error in measurement	0.25% of range or 6 mm (0.24 inch), whichever is greater
Resolution	0.1% of measuring range or 2 mm (0.08 inch), whichever is greater ${ }^{2}$)
Temperature compensation	- $-50 \ldots+150^{\circ} \mathrm{C}\left(-58 \ldots+302{ }^{\circ} \mathrm{F}\right)$ - Integral temperature sensor in transducer - External TS-3 temperature sensor (optional) - Programmable fixed temperature values
Rated operating conditions	
Installation conditions - Location - Installation category - Pollution degree	Indoor / outdoor II 4
Ambient conditions - Ambient temperature (enclosure)	$-20 \ldots+50^{\circ} \mathrm{C}\left(-4 \ldots+122{ }^{\circ} \mathrm{F}\right)$

Design

Weight

- Wall mount $\quad 1.22 \mathrm{~kg}(2.68 \mathrm{lb})$
- Panel mount $\quad 1.35 \mathrm{~kg}(2.97 \mathrm{lb})$

Material (enclosure) Polycarbonate
Degree of protection (enclosure)

- Wall mount

IP65/Type 4X/NEMA 4X

- Panel mount

IP54/Type 3/NEMA 3
Cable

- Transducer and mA output signal 2-core copper conductor, twisted,
shielded, $300 \mathrm{Vrms}, 0.82 \mathrm{~mm}^{2}$ (18 AWG), Belden 8760 or equivalent is acceptable
- Max. separation between transducer 365 m (1 200 ft) and transceiver

Displays and controls	$60 \times 40 \mathrm{~mm}(2.36 \times 1.57 \mathrm{inch}) \mathrm{LCD}$ 240×160 pixels resolution
Power supply $\left.\mathbf{y}^{3}\right)$	$100 \ldots 230 \mathrm{~V} \mathrm{AC} \pm 15 \%, 50 / 60 \mathrm{~Hz}$,
AC version	$36 \mathrm{VA}(17 \mathrm{~W})$
DC version	$12 \ldots 30 \mathrm{~V} \mathrm{DC}(20 \mathrm{~W})$

Level Measurement

Continuous level measurement
Ultrasonic controllers
HydroRanger 200 HMI

Certificates and approvals	- CE, RCM, EAC, KCC ${ }^{4)}$ - FM, CSA - CSA us/c Class I, Div. 2, Groups A, B, C and D, Class II, Div. 2, Groups F and G, Class III (wall mount only) - MCERTS Class 2 approved for Open Channel Flow
Communication	- RS 232 with Modbus RTU or ASCII via RJ-11 connector - RS 485 with Modbus RTU or ASCII via terminal blocks - Optional: SmartLinx cards for - PROFIBUS DP-V1, PROFINET (cyclic access of process values only) - DeviceNet, Modbus TCP/IP, EtherNet/IP

All relays certified for use with equipment that fails in a state at or under the rated maximums of the relays.
2) Program range is defined as the empty distance to the face of the transducer plus any range extension.
${ }^{3)}$ Maximum power consumption is listed
${ }^{4)}$ EMC performance available upon request

Selection and Ordering data
Siemens HydroRanger 200 HMI
Ultrasonic level controller for up to six pumps that
provides control, differential control and open
channel flow monitoring.
7 Click on the Article No. for the online configura-
tion in the PIA Life Cycle Portal.
Mounting, enclosure design
4 button HMI, Wall mount, standard enclosure
4 button HMI, Wall mount, 4 entries, 4 M20 cable
glands included
4 button HMI, Panel Mount
Input voltage
100 ... 230 V AC
12 ... 30 V DC
Number of measurement points
Single point model, 6 relays
Dual point model, 6 relays
Communication (SmartLinx)
Without module
SmartLinx PROFIBUS DP-VO module
SmartLinx DeviceNet module
SmartLinx PROFIBUS DP-V1 module
SmartLinx PROFINET module2)
SmartLinx EtherNet/IP module
SmartLinx Modbus TCP/IP module
See SmartLinx product page 4/348 for more
information

Selection and Ordering data	Order code
Further designs	
Please add "-Z" to Article No. and specify Order code(s).	
Stainless steel tag [69 x 50 mm (2.71 x 1.97 inch)]: Measuring-point number/identification (max. 27 characters), specify in plain text	Y15
Test Certificate: Manufacturer's test certificate M to DIN 55350, Part 18 and to ISO 9000	C11
Operating Instructions English	
German	A5E36281317
All literature is available to download for free, in a	
range of languages, at http://www.siemens.com/	
processinstrumentation/documentation	

Dimensional drawings

Panel mount dimensions

Wall mount dimensions

HydroRanger 200 HMI , dimensions in mm (inch)

Level Measurement

Continuous level measurement
Ultrasonic controllers
HydroRanger 200 HMI
Circuit diagrams

Relays shown in released

state

Note:

1. Use 2-core copper wire, twisted, with shield, for expansion up to 365 m (1 200 ft). Route cable in grounded metal conduit, separate from other cables.
2. Verify that all system components are installed in accordance with instructions
3. Connect all cable shields to the HydroRanger shield connections. Avoid differential ground potentials by not connecting cable shields to ground (earth) anywhere else.
4. Keep exposed conductors on shielded cables as short as possible to reduce noise on the line caused by stray transmissions and noise pickup.

HydroRanger 200 HMI connections

WMOCkIer

 ENCLOSURE SYSTEMS INC.

 ENCLOSURE SYSTEMS INC.}

APO DT Covers - NEMA 4X Rated Non-Metallic Enclosures

LG: Transparent hinged inspection window cover and 4 non-metallic corner screws to secure the cover to the base. Intended for use on Vynckier APO Series enclosures.
KIT: Transparent hinged inspection window cover and 4 non-metallic blanking inserts to secure the cover to the base. Suitable for mounting on 3rd party enclosures and panels. Blanking inserts reduce mounting holes to hold a \# 10 self tapping screw.

* DTCOVER-KIT can be mounted on any smooth flat surface. Installation instructions included.

Features

- 5 available sizes from $12^{\prime \prime} \times 7^{\prime \prime}$ to $24^{\prime \prime} \times 12^{\prime \prime}(\mathrm{H} \times \mathrm{W})$.
- DT Covers are maintenance free and corrosion resistant.
- Frames are made from hot compression molded halogen free, self extinguishing fiberglass reinforced polyester (FRP) that can withstand continuous temperatures from $-58^{\circ} \mathrm{F}$ to $302^{\circ} \mathrm{F}$ $\left(-50^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$.
- Inspection windows are made from transparent polycarbonate that can withstand continuous temperatures to $248^{\circ} \mathrm{F}\left(120^{\circ} \mathrm{C}\right)$.
- Included thumb screw inserts allow quick window opening for access to interior components.
- Gaskets are made from continuously poured polyurethane foam.

Applications

APO DT Covers are designed for use as inspection windows in highly corrosive environments where easy viewing and access is essential.

Standards

IEC 60529 (IP67)
IEC 62262 (IK10)
IEC 60439-1
IEC 62208
EN 60529 (IP67)
EN 62262 (IK10)
EN 60439-1
EN 62208

Approvals

UL Recognized for Types:
3, 3R, 4, 4X \& 12

UL File E54315

DT Cover is UL-Recognized
for UL Type 4X which allows the customer to submit entire application for UL Listing of product

Manufacturer's Recommended Installation Instructions:

As each application is different, these are general guidelines only:

1. Using DT Cover corner hole center dimensions pre-drill (hole diameter .203) panel for a \# 10 selftapping screw (not included).
2. Mounting surface area should be flush and clean of dirt and debris.
3. Wipe clean DT cover gasket with clean cloth and alcohol.
4. Cover can be mounted on panel using VES "Blanking Insert" part \# 41523.079 (included in KIT).
5. Place cover on panel and using the Blanking Insert, place one in each corner from the outside and secure from the inside with \# 10 self-tapping screw.
6. Seal head of screw on inside of panel with RTV to ensure watertight integrity.

Alternate construction:
Using long machine screws or bolts and a large enough washer to cover the DT cover corner screw holes, these can be used to mount the cover to the panel.

RIGHT SIDE VIEW

example drawing: A41-DTCOVER

NEMA Sizes 00, 0, 1 Reversing Starter

Horizontal Type

Class 8736 Type S reversing magnetic starters are used for full-voltage starting, stopping, and reversing AC squirrel cage motors. Class 8736 starters consist of one Class 8502 contactor and one Class 8536 starter mechanically and electrically interlocked. Open type devices, Sizes $0-5$, are available in either horizontal or vertical arrangements. Sizes 00, 6, and 7 are available as horizontal only. Enclosed devices use horizontally arranged components. Type S starters are designed for operation at up to $600 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$.
For How to Order Information, see page 16-28

Motor Logic ${ }^{\text {TM }}$ Solid-State Overload Relay (SSOLR) Protection

These ambient insensitive overload relays are available on three phase sizes 00 through 6 and standard on size 7 . They provide phase loss, phase unbalance protection. To order, add Form H30 (for selectable trip class 10 or 20 protection). For more information about Motor Logic solid-state overload relays (SSOLRs), see pages page 16-101 and page 16-119. (Catalog no. example: $8736 \mathrm{SCO8V} 06 \mathrm{H} 30$)
New!) Adapted Bimetallic or Solid-State Overload Relay (NEMA Sizes 00-1)
The Adapted Bimetallic or Solid-State starter includes a specially designed adapter that attaches with bus bars to the Type S NEMA contactor. This adapter allows direct mounting of the IEC Style bimetallic (LRD or LR3D) or solidstate (LR9D) overload relay (OLR). To order this starter configuration, add Form E (adapter only) to the standard catalog number. The LRD, LR3D, or LR9D OLR must be purchased separately, based on the FLA of the motor, and installed in the field to properly operate the starter. For the Adapted Bimetallic device only, if the FLA is known at the time of purchase, you can order the starter with the OLR installed. For more information and a list of options, see Adapted Bimetallic Overload Relay Forms, page 16-119. (Catalog no. example: 8736SCO8V06E-without OLR)

New!) TeSys T Motor Management System (NEMA Sizes 1-6)
TeSys T is a flexible system that integrates seamlessly into your automation system through five major communication protocols. TeSys T can predict what will happen in the process, as it accurately monitors current, voltage, and power over a wide range. For additional information about the TeSys T Motor Management System, see page 16-103 (for example, 8736SCO8V06H616).

Melting Alloy Overload Relays
Melting alloy type thermal overload blocks are installed as part of the starter, and thermal elements must be selected and installed separately in order to operate the starter. For a three-phase motor, three thermal units must be ordered using the tables beginning under page 16-133. The catalog number includes no Form number (for example, 8736SCO8V06).

Type S Reversing Starters, 3-Pole Polyphase
NOTE: In Table 16.171, replace the three bullets ($\bullet \bullet \bullet$) in the catalog number with the coil voltage code. Refer to the standard coil voltage codes shown in. For information on field modification of NEMA 12 enclosures, see page 16-112. For Form $\mathrm{H} 30 \cdot$ (special lower-FLA factoryassembled starter combinations with Motor Logic SSOLR protection), see Solid-State Overload Relay Forms, page 16-119.

Table 16.171: 3-Pole Polyphase, 600 Vac Maximum, $50-60 \mathrm{~Hz}$, with Motor Logic SSOLR [9]

NEMA Size	Continuous Current Ratings	Motor Voltage	Max. Hp	Open Style		NEMA 1 General Purpose Enclosure Type	NEMA $4 \& 4 \mathrm{X}$ Watertight, Dusttight Brushed Stainless Steel Enclosure (Sizes 0-5) [10] Type	NEMA 7 \& 9 [11] Hazardous Locations Class I, Groups C \& D Class II, Groups E, F \& G		NEMA 12/3R [12] Dusttight, Driptight Industrial Use Enclosure Type
				Vertical	Horizontal					
				Type	Type			Bolted, Type	SPIN-TOP ${ }^{\text {TM }}$, Type	
00	9	$\begin{aligned} & 200 \\ & 230 \\ & 460 \\ & 575 \end{aligned}$	$\begin{array}{r} 1.5 \\ 1.5 \\ 2 \\ 2 \end{array}$	-	$\begin{gathered} \mathrm{SAO} 16 \bullet \bullet \bullet \mathrm{H} 30 \\ {[13]} \end{gathered}$	$\begin{gathered} \text { SAG16•••H30 } \\ {[13]} \end{gathered}$	Use Size 0	Use Size 0	Use Size 0	Use Size 0
0	18	$\begin{aligned} & 200 \\ & 230 \\ & 460 \\ & 575 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & \hline 3 \\ & 3 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	$\left(\begin{array}{r} \text { SBO10•• } \end{array}\right) \mathrm{H} 30$	$\underset{[13]}{\mathrm{SBO} 4 \bullet \bullet \bullet \mathrm{H} 30}$	$\underset{[13]}{\mathrm{SBG} 4 \bullet \bullet \bullet \mathrm{H} 30}$	SBW14•••H30 [13]	$\underset{[13]}{\mathrm{SBT} 49 \bullet \bullet \bullet \mathrm{H} 30}$	SBR9•••H30 [13]	SBA4•••H30 [13]
1	27	$\begin{array}{r} 200 \\ 230 \\ 460 \\ 575 \\ \hline \end{array}$	7.5 7.5 10 10	$\underset{[13]}{\mathrm{SCO} \cdot \stackrel{\mathrm{H}}{ }}$	$\underset{[13]}{\mathrm{SCO} \bullet \bullet \bullet \mathrm{H} 30}$	$\begin{gathered} \text { SCG8•••H30 } \\ {[13]} \end{gathered}$	SCW14•••H30 [13]	$\underset{[13]}{\text { SCT49•••H30 }}$	SCR9•••H30 [13]	SCA4•••H30 [13]
2	45	200 230 460 575	10 15 25 25	$\underset{[13]}{\mathrm{SDO} 1 \bullet \bullet \mathrm{H} 30}$	$\underset{[13]}{\mathrm{SDO} 2 \bullet \bullet \bullet \mathrm{H} 30}$	$\underset{[13]}{\mathrm{SDG} 2 \bullet \bullet \bullet \mathrm{H} 30}$	SDW11•••H30 [13]	$\underset{[13]}{\mathrm{SDT} 43 \bullet \bullet \bullet \mathrm{H} 30}$	SDR3•••H30 [13]	SDA1•••H30 [13]
3	90	$\begin{aligned} & 200 \\ & 230 \\ & 460 \\ & 575 \\ & \hline \end{aligned}$	25 30 50 50	SEO1•••H30	SEO2•••H30	SEG2•••H30	SEW11•••H30	-	-	SEA1•••H30
4	135	$\begin{aligned} & 200 \\ & 230 \\ & 460 \\ & 575 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 40 \\ 50 \\ 100 \\ 100 \\ \hline \end{gathered}$	SFO1•••H30	SFO3•••H30	SFG3•••H30	SFW11•••H30	-	-	SFA1•••H30
5	270	$\begin{aligned} & \hline 200 \\ & 230 \\ & 460 \\ & 575 \\ & \hline \end{aligned}$	$\begin{array}{r} 75 \\ 100 \\ 200 \\ 200 \\ \hline \end{array}$	SGO1•••H30	SGO3•••H30	SGG3•••H30	SGW11•••H30	-	-	SGA1•••H30

[9] To order melting alloy overload relay, remove form "H30" from part number.
[10] NEMA 4 and 4 X stainless steel enclosures (sizes $0-5$) have a brushed finish. Sizes 6 and 7 are painted sheet steel and are rated NEMA 4 only.
[11] NEMA 7 and 9 bolted are not UL listed.
[12] NEMA 12 enclosures can be field modified for outdoor non-corrosive and non-service entrance rated applications.
[13] Form H30, with the possibility of a fourth character to select a lower FLA range (for example, H308). See "Solid-State Overload Relay Forms" on page 16-11y

Class 8736 / Refer to Catalog 8502CT9701

Table 16.171 3-Pole Polyphase, $\mathbf{6 0 0}$ Vac Maximum, $50-60 \mathrm{~Hz}$, with Motor Logic SSOLR [16.171] (cont'd.)

NEMA Size	Continuous Current Ratings	Motor Voltage	$\underset{H p}{\operatorname{Max}_{\mathrm{Hp}}}$	Open Style		NEMA 1 General Purpose Enclosure	NEMA 4 \& 4 X Watertight, Dusttight Brushed Stainless Steel Enclosure (Sizes 0-5) [14]	NEMA 7 \& 9 [15] Hazardous Locations Class I, Groups C \& D Class II, Groups E, F \& G		NEMA 12/3R [16] Dusttight, Driptight Industrial Use Enclosure
				Vertical	Horizontal					
				Type	Type	Type	Type	Bolted, Type	SPIN-TOPTM , Type	
6	540	200 230 460 575	150 200 400 400	-	SHO1•••H30	SHG1•••H30	SHW1•••H30	-	-	SHA1•••H30
7	810	$\begin{aligned} & 200 \\ & 230 \\ & 460 \\ & 460 \end{aligned}$	$\begin{aligned} & -\overline{0} \\ & 3000 \end{aligned}$	-	SJO1•••H30	SJG1•••H30	SJW1•••H30	-	-	SJA1•••H30

Type S, 2- and 3-Pole Single Phase, 4-Pole Polyphase
Devices require melting alloy thermal units, page 16-132.
NOTE: In Table 16.172, replace the three bullets ($\bullet \bullet \bullet$) in the catalog number with the coil voltage code. Refer to the standard coil voltage codes shown in .
For information on field modification of NEMA 12 enclosures, see page 16-112 .
Table 16.172: 2- and 3-Pole Single Phase, 4-Pole Polyphase, 600 Vac Maximum-50-60 Hz

$\begin{aligned} & \text { NEMA } \\ & \text { Size } \end{aligned}$	Continuous Current Ratings	Motor Voltage	Max. Hp	Type of Motor	Open Type		NEMA 1 General Purpose Enclosure Type	NEMA 4 \& 4 X Watertight, Dusttight Brushed Stainless Steel Enclosure Type	NEMA 7 \& 9 [15] Hazardous Locations Class I, Groups C \& D Class II, Groups E, F \& G		NEMA 12/3R[16] Dusttight, Driptight Industrial Use Enclosure Type
					Vertical Type	Horizontal Type			Bolted Type	Spin Top ${ }^{\text {TM }}$ Type	
2-Pole Single Phase-1 Thermal Unit Required											
00	9	115 230	$1 / 3$ 1	Single Phase 3-Wire	-	SAO13•••	SAG13•••	Use Size 0	Use Size 0	Use Size 0	Use Size 0
0	18	$\begin{array}{r} 115 \\ 230 \\ \hline \end{array}$	1 2		SBO7•••	SBO1•••	SBG1•••	SBW11•••	SBT46•••	SBR6•••	SBA1•••
1	27	$\begin{aligned} & \hline 115 \\ & 230 \\ & \hline \end{aligned}$	2 3		SCO1•••	SCO2•••	SCG2•••	SCW11•••	SCT46•••	SCR6•••	SCA1•••
3-Pole Single Phase-1 Thermal Unit Required											
00	9	$\begin{array}{r} 115 \\ 230 \\ \hline \end{array}$	$\begin{gathered} 1 / 3 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { 4-Wire } \\ \text { Rep.-Ind. } \end{gathered}$	-	SAO14•••	SAG14•••	Use Size 0	Use Size 0	Use Size 0	Use Size 0
		$\begin{aligned} & 115 \\ & 230 \\ & \hline \end{aligned}$	$\begin{gathered} 1 / 3 \\ 1 \\ \hline \end{gathered}$	4-Wire Split Ph.	-	SAO15•••	SAG15•••	Use Size 0	Use Size 0	Use Size 0	Use Size 0
0	18	$\begin{aligned} & \hline 115 \\ & 230 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	$\begin{gathered} \text { 4-Wire } \\ \text { Rep.-Ind. } \end{gathered}$	SBO8•••	SBO2•••	SBG2•••	SBW12•••	SBT47•••	SBR7•••	SBA2•••
		$\begin{aligned} & \hline 115 \\ & 230 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	4-Wire Split Ph.	SBO9•••	SBO3•••	SBG3•••	SBW13•••	SBT48•••	SBR8•••	SBA3•••
1	27	$\begin{aligned} & 115 \\ & 230 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	4-Wire Rep.-Ind.	SCO3•••	SCO4•••	SCG4•••	SCW12•••	SCT47•••	SCR7•••	SCA2•••
1		$\begin{array}{r} 115 \\ 230 \\ \hline \end{array}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	4-Wire Split Ph.	SCO5•••	SCO6•••	SCG6•••	SCW13•••	SCT48•••	SCR8•••	SCA3•••
4-Pole Polyphase-2 Thermal Units Required											
0	18	$\begin{array}{r} 200 \\ 230 \\ 460 \\ 575 \\ \hline \end{array}$	3 3 5 5	2 Phase 4-Wire	SBO11•••	SBO5•••	SBG5•••	SBW15•••	Consult the Customer Care Center at1-888-778-2733	SBR10•••	SBA5•••
1	27	$\begin{aligned} & 200 \\ & 230 \\ & 460 \\ & 575 \\ & \hline \end{aligned}$	7.5 7.5 10 10		SCO9•••	SCO10•••	SCG10•••	SCW15•••		SCR10•••	SCA5•••
2	45	$\begin{aligned} & 200 \\ & 230 \\ & 460 \\ & 575 \\ & \hline \end{aligned}$	10 15 25 25		-	SDO4•••	SDG4•••	SDW12•••		SDR4•••	SDA2•••
3	90	$\begin{aligned} & 200 \\ & 230 \\ & 460 \\ & 575 \\ & \hline \end{aligned}$	25 30 50 50		-	SEO4•••	SEG4•••	SEW12•••	-	-	SEA2•••
4	135	$\begin{aligned} & \hline 200 \\ & 230 \\ & 460 \\ & 575 \\ & \hline \end{aligned}$	40 50 100 100		-	SFO4•••	SFG4•••	SFW12•••	-	-	SFA2•••

Table 16.173: Coil Voltage Codes

Voltage		
60 Hz	50 Hz	Code
$24[17]$	-170	V01
$120[18]$	$\overline{0}$	V02
208	220	V08
240	-	V03
277	440	V04
480	550	V07
600	Specify	V99

NOTE: For voltage cotecused with control transformers, see page page 16-118. Form S (separate control) is ised when a separate source of power is available for the control (coil) voltage form S is supplied at no charge.
Dimensions: page 16-64
Factory Modifications (Forms) page 16-117
Separate Enclosures (Class 9991): page 16-110
Replacement Parts (Class 9998): page 16-122
Type S Accessories (Class 9999): page 16-125
For How to Order Information, see page 16-28.

Open and NEMA 1 Enclosures

NOTE: These dimensions are for reference only. If you need precise measurements, contact the Customer Care Center at 1-888-778-2733.

Table 16.174: Open Style, 2 or 3-Pole Only (Mounting: H = Horizontal; V = Vertical)
See Figures: Class 8702 Contactor, Open Type and Class 8736 Starter, Open Type

$\begin{aligned} & \text { NEMA } \\ & \text { Size } \end{aligned}$	Type	Mtg.	Fig. No.	Dimensions, in.													Wt. (lb)
				A	B	C	D	E	F	G	H	1	J	K	L	M	
Class 8702 Contactors																	
00	SAO	H	1	7.13	5	5.31	-	-	3.41	0.47	4.34	0.19	5.5	0.91	-	-	12
0, 1	$\begin{aligned} & \mathrm{SBO}, \\ & \mathrm{SCO} \end{aligned}$	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ 1[19] \\ \hline \end{gathered}$	$\begin{array}{r} 7.13 \\ 5.47 \\ \hline \end{array}$	95	$\begin{aligned} & \hline 5.31 \\ & 5.31 \\ & \hline \end{aligned}$	5.5	$\overline{0.22}$	3.41	$\begin{array}{r} \hline 0.47 \\ 0.61 \\ \hline \end{array}$	$\begin{gathered} 4.34 \\ 8 \\ \hline \end{gathered}$	$\begin{aligned} & 0.19 \\ & 0.61 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.03 \end{aligned}$	$\begin{aligned} & \hline 0.91 \\ & 0.22 \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & 12 \\ & 12 \\ & \hline \end{aligned}$
2	SDO	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1 \\ 1[19] \\ \hline \end{gathered}$	$\begin{array}{r} 9 \\ 6.75 \\ \hline \end{array}$	$\begin{array}{r} \hline 6.88 \\ 11.38 \\ \hline \end{array}$	$\begin{aligned} & \hline 6.03 \\ & 6.03 \\ & \hline \end{aligned}$	6.25	$0 . \overline{25}$	4.5	$\begin{gathered} 0.38 \\ 0.5 \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.63 \\ 10.38 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.25 \\ 0.5 \\ \hline \end{gathered}$	$\begin{gathered} \hline 6 \\ 0.25 \\ \hline \end{gathered}$	$\begin{gathered} 1.5 \\ 0.25 \\ \hline \end{gathered}$	-	-	$\begin{aligned} & \hline 16 \\ & 16 \\ & \hline \end{aligned}$
3	SEO	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 1 \\ 1[19] \\ \hline \end{gathered}$	$\begin{aligned} & \hline 12.72 \\ & 7.20 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 7.97 \\ 19 \\ \hline \end{gathered}$	$\begin{aligned} & 7 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 11.75 \\ & 6.25 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.48 \\ & 0.48 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline 0.48 \\ & 1.02 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7 \\ & 17 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.48 \\ & 0.98 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 11.75 \\ & 6.25 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.48 \\ & 0.48 \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & 35 \\ & 35 \\ & \hline \end{aligned}$
4	SFO	H	$\begin{gathered} 1 \\ 1[19] \\ \hline \end{gathered}$	$\begin{aligned} & 14.25 \\ & 7.97 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.69 \\ & 23.91 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \\ & \hline \end{aligned}$	$\begin{gathered} 13.25 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.48 \\ \hline \end{gathered}$	-	$\begin{gathered} \hline 0.5 \\ 1.81 \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ 20.25 \\ \hline \end{gathered}$	$\begin{aligned} & 1.84 \\ & 1.19 \\ & \hline \end{aligned}$	$\begin{gathered} 13.25 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.48 \\ \hline \end{gathered}$	-	-	45 45
5	SGO	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1 \\ 1[19] \\ \hline \end{gathered}$	$\begin{aligned} & \hline 19.31 \\ & 10.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.19 \\ & 34.41 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 9.38 \\ 9.38 \\ \hline \end{array}$	$\begin{aligned} & 18 \\ & 9.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.66 \\ & 0.63 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 1.03 \\ & 1.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 14 \\ & 32 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.16 \\ & 1.16 \\ & \hline \end{aligned}$	$\begin{array}{r} 18 \\ 9.5 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.66 \\ & 0.63 \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & 98 \\ & 98 \\ & \hline \end{aligned}$
6	SHO	H	1	22.38	28.05	9.52	18	0.63	-	3.83	21.19	3.03	18	0.77	-	-	195
7	SJO	H	1	24.25	37.25	13.81	19.75	1.52	-	-	30	-	-	-	-	-	310
Class 8736 Starters																	
00	SAO		2	7.13	6.91	5.31	-	-	3.41	0.47	4.34	6.22	4.53	5.06	0.66	-	13
0, 1	$\begin{aligned} & \mathrm{SBO}, \\ & \mathrm{SCO} \end{aligned}$	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{~V} \end{aligned}$	$\begin{gathered} 2 \\ 2[19] \end{gathered}$	$\begin{aligned} & \hline 7.13 \\ & 5.47 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.91 \\ & 11.52 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.31 \\ & 5.31 \end{aligned}$	5.03	0.22	$\stackrel{3.41}{-}$	$\begin{aligned} & 0.47 \\ & 0.61 \\ & \hline \end{aligned}$	$\begin{gathered} 4.34 \\ 8 \\ \hline \end{gathered}$	$\begin{aligned} & 6.22 \\ & 10.70 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.53 \\ & 2.52 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.06 \\ & 5.06 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.66 \\ & 0.22 \\ & \hline \end{aligned}$	5.03	$\begin{aligned} & 13 \\ & 13 \\ & \hline \end{aligned}$
2	SDO	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 2 \\ 2[19] \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ 6.75 \\ \hline \end{gathered}$	$\begin{gathered} 8.5 \\ 13.48 \\ \hline \end{gathered}$	$\begin{aligned} & 6.03 \\ & 6.03 \\ & \hline \end{aligned}$	$6 . \overline{25}$	$\overline{0.25}$	4.5	$\begin{array}{r} 0.38 \\ 0.78 \\ \hline \end{array}$	$\begin{array}{r} 5.63 \\ 10.38 \\ \hline \end{array}$	$\begin{gathered} 7.5 \\ 12.97 \\ \hline \end{gathered}$	$\begin{gathered} 5.13 \\ 3.15 \end{gathered}$	$\begin{array}{r} \hline 5.16 \\ 5.16 \\ \hline \end{array}$	$\begin{array}{r} 1.5 \\ 0.25 \\ \hline \end{array}$	$\overline{6}$	$\begin{aligned} & 18 \\ & 18 \\ & \hline \end{aligned}$
3	SEO	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 2 \\ 2[19] \\ \hline \end{gathered}$	$\begin{aligned} & 12.72 \\ & 7.31 \\ & \hline \end{aligned}$	$\begin{array}{r} 11.72 \\ 22.25 \\ \hline \end{array}$	$\begin{aligned} & \hline 7 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.75 \\ & 6.25 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.48 \\ & 0.48 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline 0.48 \\ & 1.02 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.75 \\ & \end{aligned}$	10.75	$\begin{aligned} & 11.75 \\ & 6.25 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.25 \\ & 6.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.48 \\ & 0.48 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.75 \\ & 6.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 38 \\ & 38 \\ & \hline \end{aligned}$
4	SFO	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 2 \\ 2[19] \\ \hline \end{gathered}$	$\begin{aligned} & 14.25 \\ & 7.97 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.59 \\ & 26.81 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7 \\ & 7 \\ & \hline \end{aligned}$	$\begin{gathered} 13.25 \\ 7 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.48 \\ \hline \end{gathered}$	-	$\begin{aligned} & \hline 1.84 \\ & 1.84 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.25 \\ & 24.5 \\ & \hline \end{aligned}$	$\stackrel{12.25}{-}$	$\begin{aligned} & 13.25 \\ & 4.05 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.25 \\ & 6.25 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.5 \\ 0.48 \\ \hline \end{gathered}$	$\begin{gathered} 13.25 \\ 7 \end{gathered}$	$\begin{aligned} & 48 \\ & 48 \\ & \hline \end{aligned}$
5	SGO	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{~V} \end{aligned}$	$\begin{gathered} 2 \\ 2[19] \\ \hline \end{gathered}$	$\begin{aligned} & 19.31 \\ & 10.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.91 \\ & 39.16 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.38 \\ & 9.38 \\ & \hline \end{aligned}$	$\begin{aligned} & 18 \\ & 9.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.66 \\ & 0.66 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline 1.28 \\ & 1.28 \\ & \hline \end{aligned}$	$\begin{array}{r} 19 \\ 37.25 \\ \hline \end{array}$	$\begin{array}{r} 19 \\ 37.25 \\ \hline \end{array}$	$\begin{aligned} & 18 \\ & 9.5 \end{aligned}$	$\begin{aligned} & \hline 6.63 \\ & 6.63 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.63 \\ & 0.63 \\ & \hline \end{aligned}$	$\begin{aligned} & 18 \\ & 9.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 115 \\ & 115 \\ & \hline \end{aligned}$
6	SHO	H	2	22.38	28.05	9.52	18	0.69	-	3.83	21.19	3.03	18	0.77	-	-	200
7	SJO	H	1	24.25	37.25	13.81	19.75	1.52	-	-	30	-	-	-	-	-	315

Figure 16.9: Class 8702 Contactor, Open Type

Figure 16.10: Class $\mathbf{8 7 3 6}$ Starter, Open Type

Table 16.175: NEMA 1, Class 8702 and 8736 (see Figure: NEMA 1)

NEMA Size	Dimensions-in.										Weight (Ib)	
	A	B			D	E	F	G	H	1	8702	8736
$\begin{gathered} 00,0[20] \\ 1[21] \\ \hline \end{gathered}$	11.88	11.88	8702	8736 7.53	9.75	1.06	1.06	9.75	1.06	0.31	16	17
2 [21]	14.88	14.13	7.56	7.66	12.75	1.06	1.06	12	1.06	0.31	24	25
$\begin{aligned} & \hline 3[20] \\ & 4[20] \\ & \hline \end{aligned}$	18.16	29.16	9.25	9.25	15.5	1.33	1.33	26.5	1.33	0.44	95	98
5	35.22	46.22	12.81	12.94	31	2.11	2.11	42	2.11	0.56	298	315
6	36.22	62.22	19.4723.5		Floor Mounting.						400	405
7	34.5	93			-	-						

[^13]Table 16.356: Isolated Auxiliary Contacts tor Motor
Logionverload Relays

For Use With		Parts Kit Description	$\begin{aligned} & \text { Class } \\ & \text { 9999 } \\ & \text { Type } \\ & \hline \end{aligned}$
Class \& Type	NEMA Size [9]		
8536 SA-SJ	$\begin{gathered} \text { 00B through } \\ 7 \\ \hline \end{gathered}$	$\begin{aligned} & \text { N.O. or N.C. } \\ & \text { Auxiliary } \end{aligned}$	
9065 SS, SR, SF, ST	$\underset{7}{\text { OOB through }}$	Contact (Field Convertible)	

Table 16.357: DIN Adapter

For Use With			Parts Kit	Class 9999
Class \& Type	NEMA Size[9]			
Description	Type			
9065 SS or SF	$00 B, 00 \mathrm{C}, 0$, and 1	DIN Adapter	DA01	

Table 16.358: Lug-Lug and Lug-Extender Kits

Table 16.358: Lug-Lug and Lug-Extender Kits				
For Use With		Parts Kit Description		Class 9999 Type
Class \& Type	NEMA Size 9$]$			
9065 SS or SF	00B, 00C, 0, and 1	Lug-Lug Kit for separate mounting	LLo	
9065 SS or SF	00B, 00C, 0, and 1	Lug-Extender Kit for retrofiting existing NEMA S starters	LB0	

Class 9999 Type SB6
Single Power Pole Adder

Class 9999 Type SB9
Double Power Pole Adder

Motor Logic—Class 9999

Isolated Auxiliary Contacts for Motor Logic Overload Relays

Overload relay auxiliary contacts are available factory installed or in kit form for field installation on Motor Logic overload relays. These contacts may be used for isolated alarm contact applications.

DIN Adapter

The DIN adapter provides a method to mount the Motor Logic overload relay to a 35 mm DIN rail.

Lug-Lug and Lug-Extender Kits

A Class 9999 LLO Lug-Lug Kit can be field installed on separately mounted overload relays. The standard Size 00B, 00C, 0, and 1 Class 9065 Type SS and SF overload relays are supplied without lugs. A Class 9999 LB0 Lug-Extender Kit is designed for Size $00 \mathrm{~B}, 00 \mathrm{C}, 0$, and 1 Retrofit Starter Applications. This kit allows the lugs to be in the same location as the Class 9065 melting alloy overload relay, eliminating the need for additional wire length.

Remote Reset Module

The Remote Reset Module can be easily field installed on solid-state overload relays. This module will allow the overload relay to be reset from a remote location.

Table 16.359: Remote Reset Module

For Use With		Parts Kit Description	Class 9999 Type
Class and lype	NEMA Size[9]		
536 SA-SJ	00B through 7	Remote Reset Module	RR04[10]
9065 SS, SR, SF, ST	00B through 7		
8536 SE-SF	3 and 4	Top Mounting Bracket	RB34[10][11]
9065 SS, SR, SF, ST	3 and 4		

Power Pole Adders

One single- or double-circuit power pole kit can be field added to a basic two- or threepole Type S contactor or starter Sizes 0,1 and 2, or lighting contactors $30-60 \mathrm{~A}$. See Table 16.360 for selection. The ratings for these power pole adders correspond to the NEMA contact ratings found on page 16-122. A two- or three-pole contactor or starter accepts only one single- or double-circuit unit. A power pole cannot be used on four- or five-pole devices, or on devices that are mechanically interlocked.
When adding a power pole to a Size 0 or 1 device, remove the return springs according to the instructions that come with the device.
When adding a power pole to a Size 2 or 60 A device, a coil change is required. Select a four- or five-pole coil from page 16-122, or specify Form Y118 as noted in the footnote below.
When adding Size 0-2 power pole kits to a Size 3-7 or 100-800 A device, an adapter bracket (9999 SBT1) is required. The Class 9999 Types SB6-SB15 power pole kits are suitable for copper wire only. Types SB21-SB25 come with lugs suitable for copper or aluminum wire.

Table 16.360: Power Pole Adders-Selection

For Use With		Power Pole Adder Kit	
Type	Size	Description	Class 9999 Type
SB, SC, and SM	0, 1, and 30 A	One N.O. power pole adder	SB6
SD	2		SB11 [12]
SP	60 A		SB21 [12]
SB, SC, and SM	0, 1, and 30 A	One N.C. power pole adder	SB7
SD	2		SB12 [12]
SP	60 A		SB22 [12]
SB, SC, and SM	0, 1, and 30 A	One N.O. and one N.C. power pole adder	SB8
SD	2		SB13 [12]
SP	60 A		SB23 [12]
SB, SC, and SM	0, 1, and 30 A	Two N.O. power pole adders	SB9
SD	2		SB14 [12]
SP	60 A		SB24 [12]
SB, SC, and SM	0, 1, and 30 A	Two N.C. power pole adders	SB10
SD	2		SB15 [12]
SP	60 A		SB25 [12]
SE-SJ and SQ-SZ and $S J$	$\begin{gathered} 3-7 \\ \text { and } \\ 100-800 \mathrm{~A} \\ \hline \end{gathered}$	Adapter bracket	SBT1

[^14][10]
[11]
10] 120 Vac power required.
For mounting the remote reset module on the top of the overload relay.
16-128

Product Description

DIB01 is a precise TRMS AC over or under current (selectable by DIP-switch) monitoring relay.
Owing to the built-in latch function, the ON-position of the relay output can be maintained. Inhibit function can be used to avoid relay
operation when not desired (maintenance, transitions).
The LED's indicate the state of the alarm and the output relay. Through the built-in current transformer it is possible to monitor loads up to 100 A AC.

- TRMS AC over or under current monitoring relay
- Current measuring through built-in current transformer
- Selection of measuring range by DIP-switches
- Measuring ranges from 2 A to 100 A AC
- Adjustable current on relative scale
- Adjustable hysteresis on relative scale
- Adjustable delay function (0.1 to 30 s)
- Programmable latching or inhibit at set level
- Output: 8 A SPDT relay N.D. or N.E. selectable
- For mounting on DIN-rail in accordance with DIN/EN 50022
- 22.5 mm Euronorm housing
- LED indication for relay, alarm and power supply ON
- Galvanically separated power supply

Ordering Key

 DIB 01 C M24 100AHousing
Function
Type
Item number
Output
Power supply
Measuring range

Type Selection

Mounting	Output
DIN-rail	SPDT

Input Specifications

Input (current level) DIB01 100A	Built-in current transformer
Measuring ranges Selectable by DIP-switch	
2 to 20 A AC	
5 to 50 A AC	
10 to 100 A AC current	
Max. current for 30 s	
Max. current for 1 s	2000 A

Supply Specifications

Power supply Rated operational voltage through terminals:	Overvoltage cat. III (IEC 60664, IEC 60038)
A1, A2	$24 \mathrm{VDC}-15 \%+10 \%$
	24 to $240 \mathrm{VAC} \pm 15 \%$
	45 to 65 Hz
Dielectric voltage	
Supply to input Supply to output Input to output	4 kV
Rated operational power	4 kV
DC	4 kV
AC	1 W
	$1 \mathrm{~W} / 35 \mathrm{VA}$

Contact input

DIB01
Disabled
Enabled
Latch disable

Terminals A1, Y1
Open
$<10 \mathrm{k} \Omega$
$>500 \mathrm{~ms}$

Output Specifications

Output	SPDT relay
Rated insulation voltage	250 VAC

General Specifications

Power ON delay	$1 \mathrm{~s} \pm 0.5 \mathrm{~s}$ or $6 \mathrm{~s} \pm 0.5 \mathrm{~s}$
Reaction time Alarm ON delay	$<100 \mathrm{~ms}$
Alarm OFF delay	$<100 \mathrm{~ms}$
Accuracy	$(15 \mathrm{~min}$ warm-up time)
Temperature drift	$\pm 500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Delay ON alarm	$\pm 10 \%$ on set value $\pm 50 \mathrm{~ms}$
Repeatability	$\pm 0.5 \%$ on full-scale
Indication for Power supply ON	LED, green
Alarm ON	LED, red (flashing 2 Hz
	during delay time)
Output relay ON	LED, yellow
Environment	(EN 60529)
Degree of protection	IP 20
Pollution degree	3
Operating temperature	-20 to $60^{\circ} \mathrm{C}$, R.H. $<95 \%$
Storage temperature	-30 to $80^{\circ} \mathrm{C}$, R.H. $<95 \%$

Housing Dimensions Material	$22.5 \times 80 \times 99.5 \mathrm{~mm}$ PA66 or Noryl
Weight	Approx. 155 g
Screw terminals Tightening torque	Max. 0.5 Nm acc. to IEC 60947
Product standard	EN 60255-6
Approvals	UL, CSA
CE Marking	L.V. Directive 2006/95/EC
EMC	EMC Directive 2004/108/EC

Mode of Operation

DIB01 monitors AC over or under current through an internal current transformer.

Example 1

(connection between terminals A1, Y1 - latching function enabled - Relay ND)
The relay operates and latches in operating position when the measured value exceeds (or drops below)
the set level for more than the set delay time. Provided that the current has dropped below (or has exceeded) the set point (see hysteresis setting), the relay releases when the interconnection between terminals $\mathrm{A} 1, \mathrm{Y} 1$ is interrupted or the power supply is interrupted as well. The red LED flashes until the delay time has expired.

Example 2

(no connection between terminals A1, Y1 - latch function disabled - Relay ND) The relay operates when the measured value exceeds (or drops below) the set level for more than the set delay time. It releases when the current drops below (or exceeds) the set level (see hysteresis setting) or when
power supply is interrupted.

Note

When the inhibit contact is opened, if the input signal is already in alarm position, the delay time needs to elapse before relay activation.

Function/Range/Level and Time Delay Setting

Adjust the input range setting DIP switches 1 and 2 as shown below.
Select the desired function setting DIP switches 3 to 6 as shown below.
To access the DIP switches open the grey plastic cover as shown below.
Selection of level and time delay:

Upper knob:

Setting of hysteresis on relative scale: 0 to 30% on set value.

Centre knob:

Current level setting on relative scale: 10 to 110% on full scale.

Lower knob:

Setting of delay on alarm time on absolute scale (0.1 to 30 s).

Operation Diagrams

Over current - N.D. relay
Under current - Latch function - N.D. relay

Under current - N.D. relay

Over current - Inhibit function - N.D. relay

Wiring Diagram

Dimensions

A-26

Product image

Klippon® Connect with clamping yoke Technology

The high reliability and variety of designs of the terminal blocks with clamping yoke connections make planning easer and optimises operational safety. Klippon ${ }^{\circledR}$ Connect provides a proven response to a range of different requirements.

General ordering data

Version	W-Series, Fuse terminal, Rated cross-section: 6 Order No. Type
GTIN (EAN)	4014300000
Oty.	$25 \mathrm{pc}(\mathrm{s})$.

WSI 6/2/LD 60-150VDC/AC

Technical data

www.weidmueller.com

Dimensions and weights

Depth	78.5 mm	Depth (inches)	3.091 inch
Depth including DIN rail	79.5 mm	Height	60 mm
Height (inches)	2.362 inch	Width	11.9 mm
Width (inches)	0.469 inch	Weight	28.8 g
Net weight	25.44 g		
Temperatures			
Storage temperature	$-25^{\circ} \mathrm{C} . . .55^{\circ} \mathrm{C}$	Continuous operating temp., min.	$-50{ }^{\circ} \mathrm{C}$
Continuous operating ten	$120^{\circ} \mathrm{C}$		

Material data

Material	Wemid		
UL 94 flammability rating	V-0		dark beige

System specifications

Version	Screw connection, Fuse isolator, with LED, for screwable crossconnection, One end without connector	End cover plate required	Yes
Number of potentials	1	Number of levels	1
Number of clamping points per level	2	Number of potentials per tier	1
Levels cross-connected internally	No	PE connection	No
Rail	TS 35	N -function	No
PE function	No	PEN function	No

2 clampable conductors (H05V/H07V) with equal cross-section (rated connection)

Wire connection cross section, finely stranded with wire-end ferrules DIN 46228/1, 2 clampable wires, max. Wire connection cross section, finely stranded, two clampable wires, min.
$2.5 \mathrm{~mm}^{2}$
$0.5 \mathrm{~mm}^{2}$

Wire connection cross section, finely stranded with wire-end ferrules DIN 46228/1, 2 clampable wires, min. $0.5 \mathrm{~mm}^{2}$
Wire cross-section, finely stranded, two clampable wires, max. $\quad 2.5 \mathrm{~mm}^{2}$
$2.5 \mathrm{~mm}^{2}$

Additional technical data

Explosion-tested version	No	Number of similar terminals	1
Open sides	right	Type of mounting	Snap-on
CSA rating data			
Certificate No. (CSA)	200039-1057876	Wire cross section max. (CSA)	6 AWG
Wire cross section min. (CSA)	20 AWG		
Conductors for clamping (additional connection)			

Conductors for clamping (rated connection)

Blade size

WSI 6/2/LD 60-150VDC/AC
Weidmüller Interface GmbH \& Co. KG
Klingenbergstraße 26
D-32758 Detmold
Germany

Technical data

www.weidmueller.com

Clampable conductor	Connection specification Cross-section for conductor connection	Screw connection		
		Type	solid, H05(07) V-U	
		min.	$0.5 \mathrm{~mm}^{2}$	
		max.	$10 \mathrm{~mm}^{2}$	
		nominal	$6 \mathrm{~mm}^{2}$	
	wire end ferrule	Stripping length	min.	12 mm
			max.	12 mm
			nominal	12 mm
		Tightening torque	min.	0.8 Nm
			max.	1.6 Nm
		Recommended wireend ferrule		
	Connection specification	Screw connection		
	Cross-section for conductor connection	Type	stranded, H07V-R	
		min.	$1.5 \mathrm{~mm}^{2}$	
		max.	$10 \mathrm{~mm}^{2}$	
		nominal	$6 \mathrm{~mm}^{2}$	
	wire end ferrule	Stripping length	min.	12 mm
			max.	12 mm
			nominal	12 mm
		Tightening torque	min.	0.8 Nm
			max.	1.6 Nm
		Recommended wireend ferrule		
	Connection specification	Screw connection		
	Cross-section for conductor connection	Type	flexible, H05(07) V-K	
		min.	$0.5 \mathrm{~mm}^{2}$	
		max.	$10 \mathrm{~mm}^{2}$	
		nominal	$6 \mathrm{~mm}^{2}$	
	wire end ferrule	Stripping length	min .	12 mm
			max.	12 mm
			nominal	12 mm
		Tightening torque	min.	0.8 Nm
			max.	1.6 Nm
		Recommended wireend ferrule		
Clamping range, max.	$10 \mathrm{~mm}^{2}$			
Clamping range, min.	$0.5 \mathrm{~mm}^{2}$			
Clamping screw	M 3.5			
Connection cross-section, stranded, max.	$10 \mathrm{~mm}^{2}$			
Connection cross-section, stranded, min. $1.5 \mathrm{~mm}^{2}$				
Connection direction	on side			
Gauge to IEC 60947-1	A5			
Number of connections	2			
Stripping length	12 mm			
Tightening torque, max.	1.6 Nm			
Tightening torque, min.	0.8 Nm			
Torque level with DMS electric screwdriver	3			
Type of connection	Screw connection			
Wire connection cross section AWG, max.	AWG 8			
Wire connection cross section AWG, min.	AWG 20			
Wire connection cross section, finely stranded, max.	$10 \mathrm{~mm}^{2}$			
Wire connection cross section, finely stranded, min.	$0.5 \mathrm{~mm}^{2}$			

WSI 6/2/LD 60-150VDC/AC

Weidmüller Interface GmbH \& Co. KG
Klingenbergstraße 26
D-32758 Detmold
Germany

Technical data

www.weidmueller.com

Wire connection cross-section, finely stranded with wire-end ferrules DIN 46228/1, max.	$6 \mathrm{~mm}^{2}$
Wire connection cross-section, finely stranded with wire-end ferrules DIN 46228/1, min.	$0.5 \mathrm{~mm}^{2}$
Wire connection cross-section, finely stranded with wire-end ferrules DIN 46228/4, max.	$6 \mathrm{~mm}^{2}$
Wire connection cross-section, finely stranded with wire-end ferrules DIN 46228/4, min.	$0.5 \mathrm{~mm}^{2}$
Wire connection cross-section, solid core, max.	$10 \mathrm{~mm}^{2}$
Wire connection cross-section, solid core, min.	$0.5 \mathrm{~mm}^{2}$

Display element

Operating voltage for display, max.	150 V	Operating voltage for display, min.	60 V
Type of voltage for indicator	AC/DC		
Fuse terminals			
Cartridge fuse	G-Si. $1 \times 1 / 4$	Display	Red LED
Fuse holder (cartridge holder)	Pivoting	Operating voltage, max.	150 V
Type of voltage for indicator	AC/DC		
General			
Rail	TS 35	Standards	IEC 60947-7-3
Wire connection cross section AWG, max.	AWG 8	Wire connection cross section AWG, min.	AWG 20

Rating data

Rated cross-section	$6 \mathrm{~mm}^{2}$	Rated voltage	150 V
Rated voltage to adjoining terminal	500 V	Rated current	6.3 A
Current at maximum wires	6.3 A	Standards	IEC 60947-7-3
Volume resistance according to IEC 60947-7-x	$0.78 \mathrm{~m} \Omega$	Rated impulse	6 kV
Power loss in accordance with IEC 60947-7-x	1.31 W	Pollution sever	3

UL rating data

Certificate No. (UR)	E60693		Conductor size Factory wiring max. (UR) 8 AWG Conductor size Factory wiring min. (UR) 22 AWG Conductor size Field wiring min. (UR) 22 AWGConductor size Field wiring max. (UR) 8

Classifications

ETIM 6.0	EC000899	ETIM 7.0	EC000899
ETIM 8.0	EC000899	ECLASS 9.0	27-14-11-16
ECLASS 9.1	27-14-11-16	ECLASS 10.0	27-14-11-16
ECLASS 11.0	27-14-11-16		

Approvals

Approvals

ROHS	Conform
UL File Number Search	E60693

Downloads

Approval/Certificate/Document of Conformity	$\underline{\text { CB Testreport }}$
	$\underline{\text { CB Certificate }}$
	$\underline{\text { EAC certificate }}$
	$\underline{\text { DNVGL certificate }}$
	$\underline{\text { MARITREGE Certificater Certificate }}$
	$\underline{\text { CE Declaration of Conformity }}$
CE Declaration of Conformity all terminals	
Engineering Data	$\underline{\text { CAD data - STEP }}$
Engineering Data	$\underline{\text { EPLAN, WSCAD, Zuken E3.S }}$
Catalogues Documentation	$\underline{\text { StorageConditionsTerminalBlocks }}$
Brochures	$\underline{\text { Catalogues in PDF-format }}$

WSI 6/2/LD 60-150VDC/AC
Weidmüller Interface GmbH \& Co. KG Klingenbergstraße 26
D-32758 Detmold
Germany

Drawings

ime-Delay, Glass Tube Fuses
MDL Series

Description

- Time-delay

- For board washable, insert " B " between catalog series and amp rating. E.g., BK-MDL-B-5-R

Agency Information

- UL Listed Card: MDL 1/16-8A (Guide JDYX, File E19180)
- UL Recognized Card: MDL 9-30A (Guide JDYX2, File E19180)
- CSA Certification Card: MDL 1/16-8A (Class No. 1422-01)
- CSA Component Acceptance: MDL 9-30A
(Class No. 1422-30)
- CE

Environmental Data

- Shock: 1A thru 30A - MIL-STD-202, Method 207, (HI Shock)
- Vibration: 1/4A thru 30A - MIL-STD-202, Method 204, Test Condition C (Except 5g, 500HZ)

Ordering

Specify packaging code

- Insert packaging code prefix before part number. E.g., BK (or BK1)-MDL-5-R
Specify option codes if desired
- For axial leads, insert " V " between catalog series and amp rating. E.g., BK-MDL-V-5-R

Specifications

Specifications							
	Voltage Rating	AC Interrupting Rating* (amps)@			TypicalDC Cold	Typical Meting ${ }^{12 t} \dagger$	Typical Voltage
Number	Vac	250Vac	125Vac	32Vac	${ }_{(\Omega)}$	$A C$	Drop \ddagger
MDL-1/16-R	250	35	10000		45.6	0.0046	2.79
MDL-1/10-R	250	35	10000	-	15.68	0.0420	1.95
MDL-1/8-R	250	35	10000	-	12.238	0.0422	1.52
MDL-3/16-R	250	35	10000	-	4.81	0.116	1.05
MDL-2/10-R	250	35	10000	-	5.234	0.314	0.972
MDL-1/4-R	250	35	10000	-	3.208	0.447	0.965
MDL-3/10-R	250	35	10000	-	2.046	0.412	0.808
Nat-30]	250	35	10000	-	1.567	0.982	1.46
MDL-1/2-R	250	35	10000	-	0.943	1.656	1.27
MODI.3/4 ${ }^{\text {a }}$	250	35	10000	-	0.397	4.343	1.01
MDL-1-R	250	35	10000	-	0.273	11.498	0.995
MDL-1-1/4-R	250	100	10000	-	0.205	86.2	0.722
MDL-1-1/2-R	250	100	10000	-	0.156	22.7	0.721
MDL-2-R	250	100	10000	-	0.116	62.3	0.644
MDL-2-1/4-R	250	100	10000	-	0.096	49.6	0.535
M MD	250	100	10000	-	0.081	63.1	0.410
MDL-3-R	250	100	10000	-	0.057	67.5	0.345
	250	200	10000	-	0.038	19.3	0.187
MDL-5-R	250	200	10000	-	0.025	32.0	0.160
Wibtorn	250	200	10000		0.022	37.4	0.155
MDL-6-1/4-R	250	200	10000	-	0.02	38.7	0.152
MDL-7-R	250	200	10000	-	0.018	42.7	0.140
MDL-8-R	250	200	10000		0.015	47.8	0.119
MDL-9-R	32	-	-	1000	0.012	51.5	0.124
MDL-10-R	32	-	-	1000	0.01	64.4	0.114
MDL-15-R	32	-	-	1000	0.005	354.0	0.130
MDL-20-R	32	-	-	1000	0.004	2914.0	0.530
MDL-25†t	32	-	-	1000	0.01225	15221.0	0.30
MDL-30†t	32	-	-	1000	0.0011	15581.0	0.40

[^15]Time-Current Curve

Packaging Code	
Packaging Code	Description
BK	100 fuses packed into a cardboard carton
BK1	1,000 fuses packed into a cardboard carton
BK8	8,000 fuses packed into a cardboard carton

Option Code	Description
B	Sealed to withstand aqueous cleaning (Board Washable)
V	Axial leads - copper tinned wire with nickel plated brass overcaps

The only controlled copy of this Data Sheet is the electronic read-only version located on the Cooper Bussmann Network Drive. All other copies of this document are by definition uncontrolled. This bulletin is intended to clearly present comprehensive product data and provide technical information that will help the end user with design applications. Cooper Bussmann reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Cooper Bussmann also reserves the right to change or update, without notice, any technical information contained in this bulletin. Once a product has been selected, it should be tested by the user in all possible applications.

Life Support Policy: Cooper Bussmann does not authorize the use of any of its products for use in life support devices or systems without the express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Bussmann:

ELECTRIC HEATERS

115/230 Volt 100/200 Watt

INDUSTRY STANDARDS
UL 508A Component Recognized; File No. E61997
CSA Certified, CSA File No. LR42186
CE

APPLICATION

Protect mechanical, electrical and electronic equipment from low temperatures, condensation and corrosion with this thermostatically controlled, fan-driven heater that maintains a stable enclosure temperature.
Fan draws cool air from the bottom of the enclosure and passes this air across the thermostat and heating element before being released into enclosure cavity. Heated air is discharged through the top of the heater unit.

SPECIFICATIONS

- Aluminum housing
- Thermostat range adjustable from 0 F to 100 F (-18 C to 38 C)
- Four 10-32 x self-tapping screws are included with each heater
- Ball bearing fan
- Terminal strip with clamp connector that accepts both solid and stranded wire

FINISH

- Brushed aluminum

A CAUTION

These electric heaters are not designed for use in dusty, dirty, corrosive, or hazardous locations. Portions of the heater can get hot. Adequate protection must be taken to protect people from potential burns, and to protect other components from this heat. Pentair Technical Products recommends this heater only be installed in a totally-enclosed metal enclosure.

DO NOT INSTALL HEATERS ON WOOD PANELS. Heat sensitive components should not be placed near the heater discharge area since this air can be quite warm. The clearance range defines the space that must be kept free of these components for proper and safe operation of the heater.

Performance Data 100 and 200 Watt Heaters

CATALOG NUMBERS				
	DAH1001A	DAH1002A	DAH2001A	DAH2002A
ELECTRICAL DATA				
Rated Voltage	115	230	115	230
Frequency (Hz)	50/60	50/60	50/60	50/60
Power Consumption (Watts)	100	100	200	200
Nominal Current (Amps)	0.98	0.49	1.89	0.95
HEATING PERFORMANCE				
Watts	100	100	200	200
UNIT CONSTRUCTION				
Weight (lb./kg)	1.6/0.73	1.6/0.73	1.6/0.73	1.6/0.73
\bar{X} (in./mm)	4.00/102	4.00/102	4.00/102	4.00/102

Performance Data 400 and 800 Watt Heaters

CATALOG NUMBERS				
	DAH4001B	DAH4002B	DAH8001B	DAH8002B
ELECTRICAL DATA				
Rated Voltage	115	230	115	230
Frequency (Hz)	50/60	50/60	50/60	50/60
Power Consumption (Watts)	400	400	800	800
Nominal Current (Amps)	3.72	1.86	7.37	3.69
HEATING PERFORMANCE				
Watts	400	400	800	800
UNIT CONSTRUCTION				
Weight (lb./kg)	2.2/1.00	2.2/1.00	2.2/1.00	2.2/1.00
X (in./mm)	6.00/152	6.00/152	8.00/203	8.00/203

Performance Data 1300 Watt Heaters

CATALOG NUMBERS		
	DAH13001C	DAH13002C
ELECTRICAL DATA		
Rated Voltage	115	230
Frequency (Hz)	50/60	50/60
Power Consumption (Watts)	1300	1300
Nominal Current (Amps)	11.5	5.7
HEATING PERFORMANCE		
Watts	1300	1300
UNIT CONSTRUCTION		
Weight (lb./kg)	3.4/1.54	3.4/1.54
X (in./mm)	8.00/203	8.00/203

Dimensions and Clearance Range Drawing for DAH1001A, $-2 A$ and DAH2001A, $-2 A$

Dimensions and Clearance Range Drawing for DAH4001B, -2B and DAH8001B, $-2 B$

Panel Thermostats

Small, compact size (17.5 mm wide)
1 NC 10 A- 250 V AC1
Snap action thermostatic Bimetal sensor
Wide temperature setting range
Long electrical life
35 mm rail (EN 60715) mount

Ventilation control
Should the panel temperature exceed the (maximum) set temperature then the contact will close to call for cooling. The contact will open when the temperature falls
 below this set temperature.

Ventilation: Blue Dial
Temperature ranges: $-20^{\circ} \mathrm{a}+40^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{a}+60^{\circ} \mathrm{C}$

COMPACT AXIAL FANS

INDUSTRY STANDARDS

UL Component Recognized

APPLICATION

Compact Cooling Fans are ideal for applications where enclosure space is limited and quiet, reliable cooling is required. Engineered for 50,000 hours of continuous operation without lubrication or service.

Installation

Can be installed on any surface of an enclosure. With the addition of accessory fan brackets, Compact Cooling Fans can also be installed in any position inside the enclosure for spot cooling or air circulation.

FEATURES

- Maximum operating temperature is 158 F (70 C)

4-in. fan is thermally protected and uses permanently lubricated ball bearings
6 - and $10-\mathrm{in}$. fans have ball-bearing construction and splitcapacitor motors

- Split-capacitor motors are thermally protected to avoid premature failure
- Dynamically balanced impellers molded from polycarbonate material
- One finger guard is furnished (additional finger guards are available)
All mounting hardware is provided
240 and 560 CFM fans have ball bearing construction and split capacitor motors
Fans have leadwires with ends stripped $1 / 2-\mathrm{in}$. ($12-\mathrm{mm}$) or $6-\mathrm{ft}$. ($1.8-\mathrm{m}$) cord with polarized plug for power connections

Fan bracket and additional finger guards must be purchased separately

FINISH

- Fan housing is black.

ACCESSORIES

Fan Cords
Fan Cords With Inline Thermostat
Fan Filter and Finger Guard Kit
Fan Brackets
Finger Guards

Design Data Compact Axial Fans

CATALOG NUMBERS	Nominal Size	Voltage	in./mm	$\begin{gathered} \stackrel{\text { D }}{\text { in./mm }} \end{gathered}$	$\underset{\text { in./mm }}{\mathrm{E}}$	in./mm	$\begin{gathered} \mathrm{K} \\ \mathrm{in} . / \mathrm{mm} \end{gathered}$	$\underset{\mathrm{in} . / \mathrm{mm}}{\mathrm{~L}}$	$\begin{gathered} \mathrm{M} \\ \text { in./mm } \end{gathered}$
A2AXFN24	2	24 VDC	-	1.97/50	.98/25	1.97/50	.98/25	-	-
3-in. Fans									
A3AXFN	3	115 VAC	-	2.81/71	1.40/36	2.81/71	1.40/36	-	-
A3AXFN24	3	24 VDC	-	2.81/71	1.40/36	2.81/71	1.40/36	-	-
4-in. Fans									
A4AXFNGQ	4	115 VAC	4.62/117	4.12/105	2.06/52	4.12/105	2.06/52	-	-
A4AXFNPG	4	115 VAC	4.62/117	4.12/105	2.06/52	4.12/105	2.06/52	-	-
A4AXFN	4	115 VAC	4.62/117	4.12/105	2.06/52	4.12/105	2.06/52	-	-
A4AXFN2	4	230 VAC	4.62/117	4.12/105	2.06/52	4.12/105	2.06/52	-	-
A4ARTN24	4	24 VDC	4.62/117	4.12/105	2.06/52	4.12/105	2.06/52	-	-
6-in. Fans									
AOAXINGQ	6	115 VAC	5.88/149	-	-	-	-	3.19/81	6.38/162
AGAXENPG	6	115 VAC	5.88/149	-	-	-	-	3.19/81	6.38/162
A6AXFN	6	115 VAC	5.88/149	-	-	-	-	3.19/81	6.38/162
AOAXPINZ	6	230 VAC	5.88/149	-	-	-	-	3.19/81	6.38/162
A6AXFN24	6	24 VDC	5.88/149	-	-	-	-	3.19/81	6.38/162
10-in. Fans									
A10AXFNPG	10	115 VAC	9.00/229	6.85/174	3.44/87	6.85/174	3.44/87	-	-
A10AXFN	10	115 VAC	9.00/229	6.85/174	3.44/87	6.85/174	3.44/87	-	-
A10AXFN2	10	230 VAC	9.00/229	6.85/174	3.44/87	6.85/174	3.44/87	-	

MOUNTING CUTOUT
DIMENSIONS 2 INCH

mOUNTING CUTOUT
DIMENSIONS 3 INCH

MOUNTING CUTOUT DIMENSIONS 4,6,10 INCH

Performance Data Compact Axial Fans

ELECTRICAL DATA					
Rated Voltage	24 VDC	115 VAC Lead Wires	115 VAC Power Cord Quiet Fan	$\begin{aligned} & 115 \text { VAC } \\ & \text { Power Cord } \end{aligned}$	$\begin{aligned} & 230 \text { VAC } \\ & \text { Lead Wires } \end{aligned}$
Frequency (Hz)	-	50/60	50/60	50/60	50/60
Power Connection	Lead Wires	Lead Wires	Power Cord	Power Cord	Lead Wires
2 inch Nominal-Size Fans					
Catalog Number	A2AXFN24	-	-	-	-
Nominal Current Maximum @ $50 / 60 \mathrm{~Hz}$ (Amps)	. 09	-	-	-	-
Power Consumption Maximum @ $50 / 60 \mathrm{~Hz}$ (Watts)	2.16	-	-	-	-
Free Airflow @ 50/60 Hz (CFM)*	21.5	-	-	-	-
Free Airflow @ $50 / 60 \mathrm{~Hz}\left(\mathrm{~m}^{3} / \mathrm{hr}\right.$.)*	36.5	-	-	-	-
Noise SIL @ $50 / 60 \mathrm{~Hz}$ (dBA)	65	-	-	-	-
Maximum RPM @ $50 / 60 \mathrm{~Hz}$ (RPM)	4550	-	-	-	-
Fan Size Diameter (in.)	2.36	-	-	-	-
Fan Depth (in.)	. 98	-	-	-	-
3 inch Nominal-Size Fans					
Catalog Number	A3AXFN24	A3AXFN	-	-	-
Nominal Current Maximum @ $50 / 60 \mathrm{~Hz}$ (Amps)	. 14	. 09	-	-	-
Power Consumption Maximum @ $50 / 60 \mathrm{~Hz}$ (Watts)	3.36	7	-	-	-
Free Airflow @ 50/60 Hz (CFM)*	40	27	-	-	-
Free Airflow @ $50 / 60 \mathrm{~Hz}\left(\mathrm{~m}^{3} / \mathrm{hr}\right.$.)*	68	46	-	-	-
Noise SIL @ 50/60 Hz (dBA)	35	40	-	-	-
Maximum RPM @ $50 / 60 \mathrm{~Hz}$ (RPM)	3400	2700	-	-	-
Fan Size Diameter (in.)	3.15	3.15	-	-	-
Fan Depth (in.)	. 98	1.50	-	-	-
4 inch Nominal-Size Fans					
Catalog Number	A4AXFN24	A4AXFN	A4AXFNGQ	A4AXFNPG	A4AXFN2
Nominal Current Maximum @ $50 / 60 \mathrm{~Hz}$ (Amps)	. 35	.26/.21	.09/.08	.26/.21	.14/.11
Power Consumption Maximum @ $50 / 60 \mathrm{~Hz}$ (Watts)	84	17/15	6/5	17/15	16/14
Free Airflow @ $50 / 60 \mathrm{~Hz}$ (CFM)*	118	85/100	46/49	85/100	85/100
Free Airflow @ $50 / 60 \mathrm{~Hz}\left(\mathrm{~m}^{3} / \mathrm{hr}\right.$)*	200	144/170	78/83	144/170	144/170
Noise SIL @ 50/60 Hz (dBA)	46.5	37/41	27/28	37/41	37/41
Maximum RPM @ $50 / 60 \mathrm{~Hz}$ (RPM)	3200	2415/2900	1350/1450	2415/2900	2415/2900
Fan Size Diameter (in.)	4.69	4.69	4.69	4.69	4.69
Farrvepth (In.)	1.52	1.52	1.52	1.52	1.52
6 inch Nominal-Size Fans					
Nominal Current Maximum @ $50 / 60 \mathrm{~Hz}$ (Amps)	. 88	15/36	.16/.19	. $45 / .36$.23/.18
Power Consumption Maximum @ $50 / 60 \mathrm{~Hz}$ (Watts)	21.1	36/32	16/18	36/32	39/35
Free Airflow @ 50/60 Hz (CFM)*	280	200/240	85/102	200/240	200/240
Free Airflow @ $50 / 60 \mathrm{~Hz}\left(\mathrm{~m}^{3} / \mathrm{hr}\right.$)*	476	340/408	144/173	340/408	340/408
Noise SIL @ 50/60 Hz (dBA)	62.5	50/56	35/38	50/56	50/56
Maximum RPM @ $50 / 60 \mathrm{~Hz}$ (RPM)	3750	2670/3200	1400/1650	2670/3200	2670/3200
Fan Size Diameter (in.)	6.77	6.77	6.77	6.77	6.77
Fan Depth (in.)	2.00	1.50	1.50	1.50	1.50
10 inch Nominal-Size Fans					
Catalog Number	-	A10AXFN	-	A10AXFNPG	A10AXFN2
Nominal Current Maximum @ $50 / 60 \mathrm{~Hz}$ (Amps)	-	1.0/.88	-	1.0/.88	.47/.43
Power Consumption Maximum @ $50 / 60 \mathrm{~Hz}$ (Watts)	-	36/36	-	36/36	36/36
Free Airflow @ 50/60 Hz (CFM)*	-	480/560	-	480/560	480/560
Free Airflow @ $50 / 60 \mathrm{~Hz}$ ($\mathrm{m}^{3} / \mathrm{hr}$.)*	-	816/951	-	816/951	816/951
Noise SIL @ 50/60 Hz (dBA)	-	46/49	-	46/49	46/49
Maximum RPM @ $50 / 60 \mathrm{~Hz}$ (RPM)	-	1350/1650	-	1350/1650	1350/1650
Fan Size Diameter (in.)	-	10.00	-	10.00	10.00
Fan Depth (in.)	-	3.50	-	3.50	3.50

* CFM without exhaust grille

Performance Curves for Compact Axial Fans

FAN BRACKETS

Designed to provide easy mounting of compact axial fans on enclosure panels. Brackets can be used for general air circulation or to direct air at problem areas. All sizes are $.100-\mathrm{in}$. aluminum. Package quantity of 1 bracket. Fans must be ordered separately.

CATALOG NUMBERS	AxBxC in./mm	Used with Fan Catalog Number	$\stackrel{\text { D }}{\text { in. } / \mathrm{mm}}$	$\underset{\mathrm{in} . / \mathrm{mm}}{\mathrm{E}}$	$\underset{\mathrm{in} . / \mathrm{mm}}{\mathrm{~F}}$	$\begin{gathered} \mathrm{G} \\ \text { in. } / \mathrm{mm} \end{gathered}$	$\underset{\text { in./mm }}{\mathrm{H}}$	$\underset{\mathrm{in} . / \mathrm{mm}}{\mathrm{~J}}$
ABRKT2	$\begin{gathered} 3.75 \times 2.75 \times 1.50 \\ 95 \times 70 \times 38 \end{gathered}$	A2AXFN24	2.38/60	-	1.75/44	.50/13	.37/9	.62/16
ABRKT3	$\begin{aligned} & 4.50 \times 3.50 \times 1.50 \\ & 114 \times 89 \times 38 \end{aligned}$	A3AXFN, A3AXFN24	2.75/70	-	2.50/64	.50/13	. $37 / 9$.62/16
ABRKT4	$\begin{gathered} 6.00 \times 5.00 \times 1.50 \\ 152 \times 127 \times 38 \end{gathered}$	A4AXFNPG, A4AXFNGQ, A4AXFN or A4AXFN2	3.50/89	-	3.00/76	1.00/25	.38/10	.62/16
ABRKT6	$\begin{gathered} 10.00 \times 6.88 \times 2.00 \\ 254 \times 175 \times 51 \end{gathered}$	A6AXFNPG, A6AXFNGQ, A6AXFN or A6AXFN2	6.50/51	-	5.00/127	.94/24	.38/10	1.00/25
ABRKT10	$\begin{gathered} 13.50 \times 10.12 \times 3.50 \\ 343 \times 257 \times 89 \end{gathered}$	A10AXFNPG, A10AXFNGQ, A10AXFN or A10AXFN2	8.50/216	4.00/102	4.00/102	1.06/27	.62/16	2.00/51

FINGER GUARDS

One finger guard is included with each Compact Axial Fan and Cooling Fan Package. Additional Finger Guards can be mounted on either side of the fan for maximum safety. All guards are chromeplated and meet UL 507.25 -in. plug gauge test.

CATALOG NUMBERS	Use on Compact Axial Fan Catalog Numbers
AGARD2	A2AXFN24
AGARD3	A3AXFN, A3AXFN24
AGARD4	A4AXFNPG, A4XFNGQ, A4AXFN, A4AXFN2
AGARD6	A6AXFNPG, A6AXFNGQ, A6AXFN, A6AXFN2
AGADD40	A10AXFNPG, A10AXFNQR, A10AXFN, A10AXFN2

1-CHANNEL INTRINSICALLY SAFE RELAYS ISE SERIES

- Approved for use in Class I, Class II, and Class III Hazardous Locations (Zones 0 \& 1 in Canada)
- 1-Channel
- 5A relay output
- Universal input voltage of 102132 V AC \& 10-125V DC
- Compact 17.5 mm wide enclosure for both DIN-rail or panel-mount
- LED status indicator

Better. By Design.

The ISE Series of Intrinsically Safe Relays provide a safe and reliable method to control a single load (motor starters, relays, etc.) with a single input device (switches, sensors, etc.) located in a hazardous area. These products are approved for use in Class I Groups A, B, C, D, Class II Groups E, F, G, and Class III Hazardous Locations (Zones $0 \& 1$ in Canada). The ISE Series relay must be mounted in a safe area, following Macromatic Control Drawing Number ISD2A01, as shown in Instruction Sheet 901-0000-329.

The ISE Series relays utilize a compact 17.5 mm wide enclosure that can be both mounted on 35 mm DIN rail or panel-mounted with two screws. Hazardous terminals are on the bottom of the unit for easy access in the enclosure to incoming wiring from the hazardous area and are clearly marked.

Standard Operation

Each ISE Series relay consists of an intrinsically safe input and a corresponding electromechanical relay output. There is one bi-color LED for status indication. With input voltage applied, the LED will be ON (Green) to indicate power is applied.

When the input device from the hazardous area is closed, the output relay is energized and the LED is ON (Orange). When the input device opens, the output relay will de-energize and the LED will be ON (Green).

Inverted Operation (V-suffix)

Each ISE Series relay consists of an intrinsically safe input and a corresponding electromechanical relay output. There is one bi-color LED for status indication. With input voltage applied, the LED will be ON (GREEN) to indicate power is applied.

When the input device from the hazardous area is open, the output relay is energized and the LED is ON (ORANGE). When the input device closes, the output relay will be de-energized and the LED will be ON (GREEN).

$\begin{gathered} \text { INPUT } \\ \text { VOLTAGE } \end{gathered}$	NUMBER OF CHANNELS	CATALOG NUMBER	WIRING
$\begin{aligned} & 102-132 \mathrm{~V} \mathrm{AC} \\ & (50 / 60 \mathrm{~Hz}) \& \\ & 10-125 \mathrm{~V} \text { DC } \end{aligned}$	1	ISEUR1	DIAGRAM 811
$\begin{aligned} & 102-132 \mathrm{~V} \mathrm{AC} \\ & (50 / 60 \mathrm{~Hz}) \& \\ & 10-125 \mathrm{~V} \text { DC } \end{aligned}$	1	ISEUR1V	DIAGRAM 811

1-CHANNEL INTRINSICALLY SAFE RELAYS ISE SERIES

APPLICATION DATA

Input Voltage: 102-132V AC (50/60Hz.) \& 10-125V DC
Load (Burden): 2VA Maximum
Input Switch Open Circuit Voltage: 10V DC
Output Contacts:
SPST-NO (Form A) 3A Resistive @ 125V AC @ $60^{\circ} \mathrm{C}$ \& 30V DC Resistive, Pilot Duty Rating D300

SPST-NO (Form A) 5A Resistive @ 125V AC @ $40^{\circ} \mathrm{C}$ \& 30V DC Resistive, Pilot Duty Rating D300

Life: Electrical: 50,000 Closures @ Full Load AC Mechanical: 5 Million Closures @ No Load

Response Times: < 50ms

Temperature:

Operating: -28° to $+60^{\circ} \mathrm{C}\left(-18^{\circ} \mathrm{F}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$
Storage: -55° to $+85^{\circ} \mathrm{C}\left(-67^{\circ}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$

LED Indication:
Standard Operation, ON (Green) - Input voltage; ON (Orange) Input closed and relay energized;
Inverse Operation (V-suffix), ON (Green) - Input voltage; ON
(Orange) - Input open and relay energized

Insulation Voltage:

1500 V AC between coil \& contacts
750 V AC between open contacts
1500 V AC between hazardous and safe circuits

Wire Sizes:

One \#14-24 AWG Conductor or
Two \#16 or 18 AWG Conductors
Mounting: Mounts on 35mm DIN-rail or panel-mounted with two \#8 screws when DIN-rail clips are fully extended from under the enclosure.

Control Drawing: See Instruction Sheet 901-0000-329, which includes Control Drawing ISD1A04.

Approvals:

All Dimensions in Inches (Millimeters)

Product image

Klippon® Connect with clamping yoke Technology

The high reliability and variety of designs of the terminal blocks with clamping yoke connections make planning easer and optimises operational safety. Klippon ${ }^{\circledR}$ Connect provides a proven response to a range of different requirements.

General ordering data

Version	Feed-through terminal, Screw connection, $4 \mathrm{~mm}^{2}$, 800 m
Order No.	1020180000
Type	4008190185237
GTIN (EAN)	$100 \mathrm{pc}(\mathrm{s})$.
Oty.	

WDU 4 BL
Weidmüller Interface GmbH \& Co. KG
Klingenbergstraße 26
D-32758 Detmold
Germany

Technical data

Dimensions and weights

Depth	46.5 mm	Depth (inches)	1.831 inch
Depth including DIN rail	47 mm	Height	60 mm
Height (inches)	2.362 inch	Width	6.1 mm
Width (inches)	0.24 inch	Weight	10.4 g
Net weight	9.42 g		
Temperatures			
Storage temperature	$-25^{\circ} \mathrm{C} . . .55^{\circ} \mathrm{C}$	Operating temperature range	For operating temperature range see EC Design Test Certificate / IEC ExCertificate of Conformity
Continuous operating temp., min.	$-60^{\circ} \mathrm{C}$	Continuous operating temp., max.	$130^{\circ} \mathrm{C}$

Material data

Material	Wemid		Colour
UL 94 flammability rating	V-0		

Rating data IECEx/ATEX

Certificate No. (ATEX)	DEMKO14ATEX1338U	Certificate No. (IECEX)	IECEXULD14.0005U
Max. voltage (ATEX)	690 V	Current (ATEX)	32 A
Wire cross section max. (ATEX)	$4 \mathrm{~mm}^{2}$	Max. voltage (IECEX)	690 V
Current (IECEX)	32 A	Wire cross section max. (IECEX)	$4 \mathrm{~mm}^{2}$
Operating temperature range	For operating temperature range see EC Design Test Certificate / IEC ExCertificate of Conformity	Marking EN 60079-7	Ex eb II C Gb
Ex 2014/34/EU label	II 2 G D		

System specifications

Version	Screw connection, for plug-in cross-connector, for screwable crossconnection, One end without connector	End cover plate required	Yes
Number of potentials	1	Number of levels	1
Number of clamping points per level	2	Number of potentials per tier	1
Levels cross-connected internally	No	PE connection	No
Rail	TS 35	N -function	Yes
PE function	No	PEN function	No

2 clampable conductors (H05V/H07V) with equal cross-section (rated connection)

Wire connection cross section, finely stranded with wire-end ferrules DIN		Wire connection cross section, finely stranded with wire-end ferrules DIN	
46228/1, 2 clampable wires, max.	$1.5 \mathrm{~mm}^{2}$	46228/1, 2 clampable wires, min.	$0.5 \mathrm{~mm}^{2}$
Wire connection cross section, finely stranded, two clampable wires, min.	$0.5 \mathrm{~mm}^{2}$	Wire cross-section, finely stranded, tw clampable wires, max.	$1.5 \mathrm{~mm}^{2}$

Additional technical data

Explosion-tested version	Yes	Number of similar terminals	1
Open sides	right	Type of mounting	Snap-on

Creation date January 20, 2022 3:53:39 AM CET

WDU 4 BL
Weidmüller Interface GmbH \& Co. KG
Klingenbergstraße 26
D-32758 Detmold
Germany

Technical data

www.weidmueller.com

CSA rating data

Certificate No. (CSA)	200039-1057876	Current size B (CSA)	35 A
Current size C (CSA)	35 A	Voltage size C (CSA)	600 V
Wire cross section max. (CSA)	10 AWG	Wire cross section min. (CSA)	26 AWG
Conductors for clamping (rated connection)			

Blade size	$0.6 \times 3.5 \mathrm{~mm}$		
Clampable conductor	Connection specification	Screw connection	
	Cross-section for conductor connection	Type	solid, H05(07) V-U
		min.	$0.5 \mathrm{~mm}^{2}$
		max.	$6 \mathrm{~mm}^{2}$
		nominal	$4 \mathrm{~mm}^{2}$
	wire end ferrule	Stripping length	min. 10 mm
			max. 10 mm
			nominal 10 mm
		Tightening torque	min. $\quad 0.5 \mathrm{Nm}$
			max. $\quad 1 \mathrm{Nm}$
		Recommended wireend ferrule	
	Connection specification	Screw connection	
	Cross-section for conductor connection	Type	stranded, H07V-R
		min.	$1.5 \mathrm{~mm}^{2}$
		max.	$6 \mathrm{~mm}^{2}$
		nominal	$4 \mathrm{~mm}^{2}$
	wire end ferrule	Stripping length	min. 10 mm
			max. 10 mm
			nominal 10 mm
		Tightening torque	min. $\quad 0.5 \mathrm{Nm}$
			max. $\quad 1 \mathrm{Nm}$
		Recommended wireend ferrule	
	Connection specification	Screw connection	
	Cross-section for conductor connection	Type	flexible, H05(07) V-K
		min.	0.5 Nm
		max.	6 Nm
		nominal	4 Nm
	wire end ferrule	Stripping length	min. 10 mm
			max. 10 mm
			nominal 10 mm
		Tightening torque	min. $\quad 0.5 \mathrm{Nm}$
			max. $\quad 1 \mathrm{Nm}$
		Recommended wireend ferrule	
Clamping range, max.	$6 \mathrm{~mm}^{2}$		
Clamping range, min.	$0.13 \mathrm{~mm}^{2}$		
Clamping screw	M 3		
Connection cross-section, stranded, max.	$6 \mathrm{~mm}^{2}$		
Connection cross-section, stranded, min. $1.5 \mathrm{~mm}^{2}$			
Connection direction	on side		
Gauge to IEC 60947-1	A4		
Number of connections	2		
Stripping length	10 mm		
Tightening torque, max.	1 Nm		
Tightening torque, min.	0.5 Nm		

Creation date January 20, 2022 3:53:39 AM CET

WDU 4 BL
Weidmüller Interface GmbH \& Co. KG
Klingenbergstraße 26
D-32758 Detmold
Germany
Technical data
www.weidmueller.com

Torque level with DMS electric screwdriver	2
Twin wire-end ferrules, max.	$2.5 \mathrm{~mm}^{2}$
Twin wire-end ferrules, min.	$0.5 \mathrm{~mm}^{2}$
Type of connection	Screw connection
Wire connection cross section AWG, max.	AWG 10
Wire connection cross section AWG, min.	AWG 26
Wire connection cross section, finely stranded, max.	$6 \mathrm{~mm}^{2}$
Wire connection cross section, finely stranded, min.	$0.5 \mathrm{~mm}^{2}$
Wire connection cross-section, finely stranded with wire-end ferrules DIN 46228/1, max.	$4 \mathrm{~mm}^{2}$
Wire connection cross-section, finely stranded with wire-end ferrules DIN 46228/1, min.	$0.5 \mathrm{~mm}^{2}$
Wire connection cross-section, finely stranded with wire-end ferrules DIN 46228/4, max.	$4 \mathrm{~mm}^{2}$
Wire connection cross-section, finely stranded with wire-end ferrules DIN 46228/4, min.	$0.5 \mathrm{~mm}^{2}$
Wire connection cross-section, solid core, max.	$6 \mathrm{~mm}^{2}$
Wire connection cross-section, solid core, min.	$0.5 \mathrm{~mm}^{2}$

General			
Rail	TS 35	Standards	IEC 60947-7-1
Wire connection cross section AWG, max.	AWG 10	Wire connection cross section AWG, min.	AWG 26
Rating data			
Rated cross-section	$4 \mathrm{~mm}^{2}$	Rated voltage	800 V
Rated current	32 A	Current at maximum wires	41 A
Standards	IEC 60947-7-1	Volume resistance according to IEC 60947-7-x	$1 \mathrm{~m} \Omega$
Rated impulse withstand voltage	8 kV	Power loss in accordance with IEC 60947-7-x	1.02 W
Pollution severity	3		

UL rating data

Certificate No. (UR)	E60693	Conductor size Factory wiring max. (UR)	10 AWG
Conductor size Factory wiring min. (UR)	26 AWG	Conductor size Field wiring max. (UR)	10 AWG
Conductor size Field wiring min. (UR)	22 AWG	Current size C (UR)	35 A
Voltage size C (UR)	600 V		
Classifications			
ETIM 6.0	EC000897	ETIM 7.0	EC000897
ETIM 8.0	EC000897	ECLASS 9.0	27-14-11-20
ECLASS 9.1	27-14-11-20	ECLASS 10.0	27-14-11-20
ECLASS 11.0	27-14-11-20		

Creation date January 20, 2022 3:53:39 AM CET

WDU 4 BL
Weidmüller Interface GmbH \& Co. KG
Klingenbergstraße 26
D-32758 Detmold
Germany

Technical data

Approvals

Approvals	
ROHS	Conform
UL File Number Search	E60693
Downloads	
Approval/Certificate/Document of Conformity	Attestation of Conformity IECEx Certificate CB Testreport CB Certificate EAC certificate DNVGL certificate NEMKO certificate INMETRO certificate Lloyds Register Certificate MARITREG Certificate POLSKIREJ certificate EAC EX Certificate CCC Ex Certificate CE Declaration of Conformity ATEX Certificate CE Declaration of Conformity all terminals
Engineering Data	CAD data - STEP
Engineering Data	EPLAN, WSCAD, Zuken E3.S
User Documentation	NTI WDU/WPE 4 Usage of terminals in EXi atmospheres StorageConditionsTerminalBlocks
Catalogues	Catalogues in PDF-format
Brochures	

WDU 4 BL
Weidmüller Interface GmbH \& Co. KG Klingenbergstraße 26
D-32758 Detmold
Germany

Drawings
www.weidmueller.com

Straight Blade Devices
15A, 125V

DIN Rail Utility Box- GFCI Duplex

 Receptacles
Features

- It provide utility power to any control cabinet
- Optional auxiliary contacts for feed through capability
- Pre-wired "kits" are available for end-user customization

Ordering Information

Description	Device Color	UPC	Catalog Number
Complete unit vertical	Gray	783585108056	DRUBGFI15
mount			

Listings

UL Listed
Certified to CSA

Specifications

Cover/Faceplate	PVC
Base	PVC
Plug	PVC

Resources

Customer Use Drawing
eCatalog

INDUSTRIAL CORROSION INHIBITORS

nVent HOFFMAN corrosion inhibitors protect

- Interior components of electrical enclosures, boxes, consoles and wireways
- Interior components of electronic enclosures
- Electrical and electronic equipment and controls
- Parts and components that are packaged in crates during shipping and storage
- Switch gear and relay cabinets
- Interiors of pipes, conduits and fuse boxes
- Process control computers, instruments and recording devices
- Tool chest interiors and contents
- Equipment stored at construction sites

Chief Advantages

- Protects against salt and high humidity
- Eliminates the need of oiling, plating or dipping metal
- Puts protected equipment to use immediately without degreasing or coating removal

How They Work

Each inhibitor contains a special chemical combination that vaporizes and condenses on all surfaces in an enclosed area. Vapors will redeposit as needed in the event of condensation of moisture on surfaces. These vapors reach every part of an enclosure, protecting all interior components. Spraying, wiping or greasing are not required. This eliminates precoating, special wraps and drying agents. Protection is effective even in salt-water atmospheres. The AHCI5E and AHCI10E emitters have additional red-metal inhibitors for further protection. Enclosures containing corrosion inhibitors must be reasonably sealed.

Life Expectancy and Usage

The normal useful life-span of nVent HOFFMAN corrosion inhibitors is in excess of one year. However, inhibitor life expectancy is shortened by approximately 25 percent when exposed to temperatures above $104 \mathrm{~F}(40 \mathrm{C})$. This product is not recommended for use where temperature exceeds 199 F. Since Hoffman corrosion inhibitors are vapor-phase protective, all surfaces to be protected should be accessible to the vapors. The maximum distance the vapors can travel is approximately 1.50 ft . $(.46 \mathrm{~m})$. Protection of
long, narrow enclosures can be achieved with tape or multiple inhibitors.

Storage and Handling

Each nVent HOFFMAN corrosion inhibitor is individually packaged in a resealable bag for maximum effectiveness at the time of usage. Corrosion inhibitors should be stored at temperatures not exceeding 120 F (45 C). Hoffman corrosion inhibitors are not returnable. When determining the proper corrosion inhibitor for your application, assume the enclosure volume to be protected is greater than calculated if (1) cabinet doors are opened frequently, (2) cabinet is located in an extremely corrosive area and/or (3) cabinet length divided by depth is greater than four.

AHCI1DV

Foam device protects one cubic foot (28 liters) of enclosure volume for approximately one year.
Size: . $25 \times 1.25 \times 3.00$ in. $(6 \times 32 \times 76 \mathrm{~mm})$

AHCI5E

Emitter protects $5 \mathrm{ft} .^{3}$ (142 liters) of enclosure volume for approximately two years from the date of manufacture. The useful life (protection) depends on the moisture surrounding the application. Severe environments recommend no more than 3 months before replacing, less severe recommend no more than 6 months before replacing. Emitters contain additional red metal (non-ferrous) inhibitors.
cize. 2.21 in. (diameter) $\times 0.81 \mathrm{in}$. (high) ($59 \mathrm{~mm} \times 21 \mathrm{~mm}$)

AHCI10E

Emittorpiotects $10 \mathrm{ft}^{3}$ (283 liters) of enclosure volume for approximately two years from the date of manufacture. The useful life (protection) depends on the moisture surrounding the application. Severe environments recommend no more than 3 months before replacing, less severe recommend no more than 6 months before replacing. Emitters contain additional red metal (non-ferrous) inhibitors.
Size: 2.31 in. (diameter) x 1.38 in. (high) ($59 \mathrm{~mm} \times 35 \mathrm{~mm}$)

AHCI60R

Tape protects $60 \mathrm{ft}^{3}$ of enclosure volume per roll. Use approximately 2.50 in . (63 mm) of tape per cubic foot (28 liters) of enclosure volume to be protected. Each roll of tape is packaged individually in a resealable bag.
Size: . $25 \mathrm{in} . \times .75 \mathrm{in} . \times 12.00 \mathrm{ft}$. ($6 \mathrm{~mm} \times 19 \mathrm{~mm} \times 3.6 \mathrm{~m}$)

AHCl240R

Tape protects 240 ft . ${ }^{3}$ of enclosure volume per roll. Use approximately 1.00 in . (25 mm) of tape per cubic foot (28 liters) of enclosure volume to be protected. Each roll of tape is packaged individually in a resealable bag.
Size: . 25 in. x 2.00 in . $\times 20.00 \mathrm{ft}$. ($6 \mathrm{~mm} \times 51 \mathrm{~mm} \times 6.1 \mathrm{~m}$)

AHCI238S

Spray is a non-conductive, nonflammable, vapor-phase film and is non-toxic. It has essentially neutral pH value. Application provides instant protection against corrosion. Spray is water soluble and can be easily flushed away with water if desired. This product should be kept from freezing and has a shelf life of 2+ years in normal warehouse conditions.

BULLETIN: A80

Standard Product

Catalog Number	Enclosure Volume Protected (ft. ${ }^{3}$)	Enclosure Volume Protected (liters)	Package Qty.
AHCl1DV	1	28.32	50
Anciot	5	141.6	25
AHCI10E	10	283.2	12
HWCIGOR	60	1699	3
AHCl240R	240	6797	1
AHCl238S	50	1416	6

Metal Protection Chart

Metal	Protected by Chemical	Unprotected by Chemical
Aluminum	Marked reduction of surface attack; no pitting	Severe surface attack; tarnish; pitting
Brass ${ }^{\text {a }}$	Decreased tarnish; very minor surface attack	Surface discoloration; pitting
Steel, Iron	No change	Severe corrosion
Copper ${ }^{\text {a }}$	Slight staining	Heavy corrosive attack
Zinc Plate	Slight discoloration	Severe corrosion
Tin Plate	Slight discoloration	Moderate corrosive attack

General Accessories

Stahlin enclosures are created in standard forms and shapes, but the ability to customize into unique end user configurations may be the single best reason to buy Stahlin products. Certain accessories are available by part number and can be added at the time of the enclosure purchase, or added later as a separate item.

By comparison, modifications are considerably more complex and end user specific and they must be implemented before the enclosure leaves the factory. All items listed as Accessories are available as separately priced items. These services designated factory install Modifications must be requested at the time of order placement.

Breather Vent - 4X

Stahlin's non-metallic Breather Vent allows an enclosure to "breathe" - literally allowing the free passage of air while maintaining UL Type 4X enclosure

integrity as a recognized component.

Front View

ENCLOSURE DRILLING METHOD BREATHER VENT

Drain Vent - 4X

Stahlin's new non-metallic Drain Vent reliably protects electrical equipment housed inside an enclosure by properly draining unwanted moisture or accumulated water from within, while maintaining UL Type 4 X enclosure integrity as a recognized component.

A-37

Product image

Klippon® Connect with clamping yoke Technology

The high reliability and variety of designs of the terminal blocks with clamping yoke connections make planning easer and optimises operational safety. Klippon® ${ }^{\circledR}$ Connect provides a proven response to a range of different requirements.

General ordering data

Version	W-Series, Fuse terminal, Rated cross-section: 6 Order No. Type 1014100000
GTIN (EAN)	4008190156954
Oty.	$25 \mathrm{pc}(\mathrm{s})$.

WSI 6/2/LD 10-36V DC/AC
Weidmüller Interface GmbH \& Co. KG
Klingenbergstraße 26
D-32758 Detmold
Germany

Technical data

www.weidmueller.com

Dimensions and weights

Depth	78.5 mm	Depth (inches)	3.091 inch
Depth including DIN rail	79.5 mm	Height	60 mm
Height (inches)	2.362 inch	Width	11.9 mm
Width (inches)	0.469 inch	Weight	29.8 g
Net weight	25.48 g		
Temperatures			
Storage temperature	$-25^{\circ} \mathrm{C} . . .55^{\circ} \mathrm{C}$	Continuous operating temp., min.	$-50{ }^{\circ} \mathrm{C}$
Continuous operating ten	$120^{\circ} \mathrm{C}$		

Material data

Material	Wemid		
UL 94 flammability rating	V-0		dark beige

System specifications

Version	Screw connection, Fuse isolator, with LED, for screwable crossconnection, One end without connector	End cover plate required	Yes
Number of potentials	1	Number of levels	1
Number of clamping points per level	2	Number of potentials per tier	1
Levels cross-connected internally	No	PE connection	No
Rail	TS 35	N -function	No
PE function	No	PEN function	No

2 clampable conductors (H05V/H07V) with equal cross-section (rated connection)

Wire connection cross section, finely stranded with wire-end ferrules DIN 46228/1, 2 clampable wires, max. Wire connection cross section, finely stranded, two clampable wires, min.
$2.5 \mathrm{~mm}^{2}$
$0.5 \mathrm{~mm}^{2}$

Wire connection cross section, finely stranded with wire-end ferrules DIN 46228/1, 2 clampable wires, min. $0.5 \mathrm{~mm}^{2}$
Wire cross-section, finely stranded, two clampable wires, max. $\quad 2.5 \mathrm{~mm}^{2}$
$2.5 \mathrm{~mm}^{2}$

Additional technical data

Conductors for clamping (rated connection)

Blade size

WSI 6/2/LD 10-36V DC/AC
Weidmüller Interface GmbH \& Co. KG
Klingenbergstraße 26
D-32758 Detmold
Germany

Technical data

www.weidmueller.com

Clampable conductor	Connection specification Cross-section for conductor connection	Screw connection		
		Type	solid, H05(07) V-U	
		min.	$0.5 \mathrm{~mm}^{2}$	
		max.	$10 \mathrm{~mm}^{2}$	
		nominal	$6 \mathrm{~mm}^{2}$	
	wire end ferrule	Stripping length	min.	12 mm
			max.	12 mm
			nominal	12 mm
		Tightening torque	min.	0.8 Nm
			max.	1.6 Nm
		Recommended wireend ferrule		
	Connection specification	Screw connection		
	Cross-section for conductor connection	Type	stranded, H07V-R	
		min.	$1.5 \mathrm{~mm}^{2}$	
		max.	$10 \mathrm{~mm}^{2}$	
		nominal	$6 \mathrm{~mm}^{2}$	
	wire end ferrule	Stripping length	min.	12 mm
			max.	12 mm
			nominal	12 mm
		Tightening torque	min.	0.8 Nm
			max.	1.6 Nm
		Recommended wireend ferrule		
	Connection specification	Screw connection		
	Cross-section for conductor connection	Type	flexible, H05(07) V-K	
		min.	$0.5 \mathrm{~mm}^{2}$	
		max.	$10 \mathrm{~mm}^{2}$	
		nominal	$6 \mathrm{~mm}^{2}$	
	wire end ferrule	Stripping length	min .	12 mm
			max.	12 mm
			nominal	12 mm
		Tightening torque	min.	0.8 Nm
			max.	1.6 Nm
		Recommended wireend ferrule		
Clamping range, max.	$10 \mathrm{~mm}^{2}$			
Clamping range, min.	$0.5 \mathrm{~mm}^{2}$			
Clamping screw	M 3.5			
Connection cross-section, stranded, max.	$10 \mathrm{~mm}^{2}$			
Connection cross-section, stranded, min. $1.5 \mathrm{~mm}^{2}$				
Connection direction	on side			
Gauge to IEC 60947-1	A5			
Number of connections	2			
Stripping length	12 mm			
Tightening torque, max.	1.6 Nm			
Tightening torque, min.	0.8 Nm			
Torque level with DMS electric screwdriver	3			
Type of connection	Screw connection			
Wire connection cross section AWG, max.	AWG 8			
Wire connection cross section AWG, min.	AWG 20			
Wire connection cross section, finely stranded, max.	$10 \mathrm{~mm}^{2}$			
Wire connection cross section, finely stranded, min.	$0.5 \mathrm{~mm}^{2}$			

Creation date December 29, 2021 8:43:21 PM CET

WSI 6/2/LD 10-36V DC/AC
Weidmüller Interface GmbH \& Co. KG
Klingenbergstraße 26
D-32758 Detmold
Germany

Technical data

www.weidmueller.com

Wire connection cross-section, finely $6 \mathrm{~mm}^{2}$
stranded with wire-end ferrules DIN
$46228 / 1$, max.
Wire connection cross-section, finely stranded with wire-end ferrules DIN $46228 / 1$, min. Wire connection cross-section, finely stranded with wire-end ferrules DIN $46 \mathrm{~mm}^{2}$ Wire connection cross-section, finely stranded with wire-end ferrules DIN $46228 / 4$, min. Wire connection cross-section, solid core, max. Wire connection cross-section, solid core, min.$\quad 0.5 \mathrm{~mm}^{2}$

Display element

Operating voltage for display, max.	36 V	Operating voltage for display, min.	10 V
Type of voltage for indicator	AC/DC		
Fuse terminals			
Cartridge fuse	G-Si. $1 \times 1 / 4$	Display	Red LED
Fuse holder (cartridge holder)	Pivoting	Operating voltage, max.	36 V
Type of voltage for indicator	AC/DC		
General			
Rail	TS 35	Standards	IEC 60947-7-3
Wire connection cross section AWG, max.	AWG 8	Wire connection cross section AWG, min.	AWG 20

Rating data

Rated cross-section	$6 \mathrm{~mm}^{2}$	Rated voltage	36 V
Rated voltage to adjoining terminal	500 V	Rated current	6.3 A
Current at maximum wires	6.3 A	Standards	IEC 60947-7-3
Volume resistance according to IEC 60947-7-x	$0.78 \mathrm{~m} \Omega$	Rated impuls	6 kV
Power loss in accordance with IEC 60947-7-x	1.31 W	Pollution seve	3

UL rating data

Certificate No. (UR)	E60693	Conductor size Factory wiring max. (UR) 8 AWG	
Conductor size Factory wiring min. (UR)	22 AWG	Conductor size	8 AWG
Conductor size Field wiring min. (UR)	22 AWG		
Classifications			
ETIM 6.0	EC000899	ETIM 7.0	EC000899
ETIM 8.0	EC000899	ECLASS 9.0	27-14-11-16
ECLASS 9.1	27-14-11-16	ECLASS 10.0	27-14-11-16
ECLASS 11.0	27-14-11-16		

Approvals

Approvals

ROHS	Conform
UL File Number Search	E60693

Downloads

Approval/Certificate/Document of Conformity	CB Testreport CB Certificate EAC certificate DNVGL certificate Lloyds Register Certificate MARITREG Certificate CE Declaration of Conformity CE Declaration of Conformity all terminals
Engineering Data	CAD data - STEP
Engineering Data	EPLAN, WSCAD, Zuken E3.S
User Documentation	Beipackzettel_SAKS_GL_LD.pdf StorageConditionsTerminalBlocks
Catalogues	Catalogues in PDF-format
Brochures	

WSI 6/2/LD 10-36V DC/AC
Weidmüller Interface GmbH \& Co. KG Klingenbergstraße 26
D-32758 Detmold
Germany

Drawings

Product features

- Fast-acting
- Optional axial leads available
- $1 / 4^{\prime \prime} \times 1$ 1/4" ($6.3 \times 32 \mathrm{~mm}$) physical size
- Glass tube, nickel-plated brass endcap construction
- UL Listed product meets standard 248-14

Agency information

- UL Listed Card: AGC 1/20-10
- UL Recognition Card: AGC 11-40
- CSA Component Acceptance Card (Class No. 1422 30)
- CSA Certification Card (Class No. 1422 01)

Environmental data

- Shock: 1/20-3/4A - MIL-STD-202, Method 213, Test Condition I; 1-30A -MIL-STD-202, Method 207, (HI Shock)
- Vibration: 1/20-30A - MIL-STD-202,Method 204, Test Condition A (Except 5g, 500Hz)

Ordering

- Specify packaging code prefix, part number and option code suffix (if applicable)

Part Number	AC Voltage Rating	SPECIFICATIONS					
		AC Interrupting Rating (amps)			Typical DC Cold Resistance* (Ω)	Typical Melting $I^{2} t^{\dagger} A C$	Typical Voltage Drop ${ }^{\text {n }}$
		250	125	32			
AGC- $1 / 20$-R	250	35	10,000	-	4.500	0.00773	0.67
AGC- $110-\mathrm{R}$	250	35	10,000	-	12.565	0.000787	6.00
AGC- $1 / 8-\mathrm{R}$	250	35	10,000	-	6.800	0.00131	4.67
AGC- $3 / 16$-R	250	35	10,000	-	4.900	0.00637	4.12
AGC- $2 / 10-\mathrm{R}$	250	35	10,000	-	3.360	0.00435	4.51
AGC- $1 / 4-\mathrm{R}$	250	35	10,000	-	2.300	0.0148	0.89
AGC- $3 / 10$-R	250	35	10,000	-	1.670	0.0208	2.88
AGC- $3 / 8-\mathrm{R}$	250	35	10,000	-	1.203	0.0321	4.59
AGC- $1 / 2-\mathrm{R}$	250	35	10,000	-	0.615	0.269	0.59
AGC- $1 / 4-R$	250	35	10,000	-	0.312	0.815	0.37
AGC-1-R	250	35	10,000	-	0.190	1.615	0.31
AGC-1-1/4-R	250	100	10,000	-	0.145	0.018	0.35
AGC-1-1/2-R	250	100	10,000	-	0.115	0.0149	0.27
AGC-2-R	250	100	10,000	-	0.078	0.00509	0.28
AGC-2- $1 / 4-\mathrm{R}$	250	100	10,000	-	0.067	0.00588	0.26
AGC-2- $1 / 2-\mathrm{R}$	250	100	10,000	-	0.057	0.00879	0.31
AGC-3-R	250	100	10,000	-	0.045	0.0167	0.25
AGC-4-R	250	200	10,000	-	0.030	0.0305	0.22
AGC-5-R	250	200	10,000	-	0.024	0.045	0.23
AGC-6-R	250	200	10,000	-	0.020	0.071	0.23
AGC-7-R	250	200	10,000	-	0.017	0.105	0.23
AGC-7-1/2-R	250	200	10,000	-	0.0146	-	-
AGC-8-R	250	200	10,000	-	0.014	0.152	0.19
AGC-9-R	250	200	10,000	-	0.012	0.21	0.18
AGC-10-R	250	200	10,000	-	0.008	0.492	0.20
AGC-12-R	32	-	-	1000	0.0070	-	-
AGC-14-R	32	-	-	1000	0.0062	-	-
AGC-15-R	32	-	-	1000	0.006	0.566	0.14
AGC-20-R	32	-	-	1000	0.004	1.438	0.12
AGC-25-R	32	-	-	1000	0.003	2.109	0.11
AGC-30-R	32	-	-	1000	0.002	3.807	0.12
AGC-35-R	32	-	-	1000	0.0014	-	-
AGC-40-R	32	-	-	1000	0.0019	-	-

* DC Cold Resistance (Measured at $\leq 10 \%$ of rated current)
\dagger Typical Melting I ${ }^{2} t\left(\mathrm{~A}^{2} \mathrm{Sec}\right)\left(I^{2} \mathrm{t}\right.$ was measured at listed interrupting rating and rated voltage.)
\neq Typical Voltage Drop (Voltage drop was measured at $25^{\circ} \mathrm{C}$ ambient temperature at rated current)

Powering Business Worldwide

Time-Current Curves

Dimensions - mm/in

Packaging Code Prefix	
Code	Description
BK	100 pieces of fuses packed into a cardboard carton with flaps folded
BK1	1000 pieces of fuses packed into a cardboard carton with flaps folded
Option Code Suffix	
Code	Description
B	Board Washable - Hermetically sealed to withstand aqueous cleaning
V	Axial leads - copper tinned wire with nickel-plated brass overcaps
-R	RoHS Compliant

Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin

Eaton

Electronics Division
1000 Eaton Boulevard
Cleveland, OH 44122
United States
www.eaton.com/electronics

Field Equipment

Overview

EchoMax XPS transducers use ultrasonic technology to measure level in a wide range of liquids and solids.

Benefits

- Integral temperature compensation
- Low ringing effect reduces blanking distance
- Optional foam facing for dusty applications
- Self-cleaning and low-maintenance
- Chemically resistant
- Hermetically sealed

Application

XPS transducers can be fully immersed, are resistant to steam and corrosive chemicals, and can be installed without flanges.
The XPS series offers versions for various measuring ranges up to $30 \mathrm{~m}(100 \mathrm{ft})$ and up to a max. temperature of $95^{\circ} \mathrm{C}\left(203{ }^{\circ} \mathrm{F}\right)$.

During operation, the EchoMax transducers emit acoustic pulses in a narrow beam. The level monitor measures the propagation time between pulse emission and its reflection (echo) to calculate the distance.

Technical specifications

Input	XPS-10	XPS-15 (standard and F models)	XPS-30
Measuring range ${ }^{1)}$	$0.3 \ldots 10 \mathrm{~m}(1 . . .33 \mathrm{ft})$	$\begin{aligned} & \frac{\text { Standara: }}{0.3 \ldots 15 \mathrm{~m}}(1 \ldots 50 \mathrm{ft}) \\ & \frac{\text { XPS-15F: }}{0.45 \ldots 15 \mathrm{~m}(1.5 \ldots 50 \mathrm{ft})} \end{aligned}$	0.6 ... 30 m (2 ... 100 ft)
Output			
Frequency	44 kHz		30 kHz
Beam angle	12°	6°	6°
Environmental			
Location	Indoors/outdoors		
Ambient temperature	$-40 \ldots+95^{\circ} \mathrm{C}\left(-40 \ldots+203{ }^{\circ} \mathrm{F}\right)$	$\begin{aligned} & \text { Standard: } \\ & -40 \ldots+95{ }^{\circ} \mathrm{C}\left(-40 \ldots+203^{\circ} \mathrm{F}\right) \\ & \frac{\text { XPS-15F: }}{-20 \ldots+95^{\circ} \mathrm{C}\left(-4 \ldots+203^{\circ} \mathrm{F}\right)} \end{aligned}$	$-40 \ldots+95^{\circ} \mathrm{C}\left(-40 \ldots+203{ }^{\circ} \mathrm{F}\right)$
Storage temperature	$-40 \ldots+95^{\circ} \mathrm{C}\left(-40 \ldots+203{ }^{\circ} \mathrm{F}\right)$	$\begin{aligned} & \frac{\text { Standard: }}{-40 \ldots+95}{ }^{\circ} \mathrm{C}\left(-40 \ldots+203^{\circ} \mathrm{F}\right) \\ & \frac{\text { XPS-15F: }}{-20 \ldots+95^{\circ} \mathrm{C}\left(-4 \ldots+203^{\circ} \mathrm{F}\right)} \end{aligned}$	$-40 \ldots+95^{\circ} \mathrm{C}\left(-40 \ldots+203{ }^{\circ} \mathrm{F}\right)$
Pollution degree	4		
Pressure	8 bar g (120 psi g) Flanged: 0.5 bar g (7.25 psi g)	8 bar g (120 psi g) Flanged: $0.5 \operatorname{barg}$ (7.25 psi g)	0.5 bar g (7.25 psi g) Flanged: 0.5 bar g (7.25 psi g)
Design			
Weight	$\begin{aligned} & 0.8 \mathrm{~kg} \\ & (1.8 \mathrm{lb}) \end{aligned}$	$1.3 \mathrm{~kg}(2.8 \mathrm{lb})$ Flanged: 2 kg (4.4 lb)	$\begin{aligned} & 4.3 \mathrm{~kg} \\ & (9.5 \mathrm{lb}) \end{aligned}$
Power supply	Operation of transducer only with approved Siemens controllers		
Material	Standard: PVDF Flanged: PVDF with CPVC flange Option: PTFE face with CPVC flange	Standard: PVDF Flanged: PVDF with CPVC flange Option: PTFE face with CPVC flange	Standard: PVDF Flanged: PVDF with CPVC flange Option: PTFE face with CPVC flange
Color	Blue	$\begin{aligned} & \text { Standard: Blue } \\ & \text { XPS-15F: Gray } \end{aligned}$	Blue
Process connection	1" NPT or 1" BSPT	$\begin{aligned} & \text { Standard: 1" NPT or 1" BSPT } \\ & \text { XPS-15F: 1" NPT } \end{aligned}$	1.5 " universal thread (NPT or BSPT)
Degree of protection	IP66/68	IP66/68	IP66/68
Cable	2-wire twisted pair/braided and foil shielded $0.5 \mathrm{~mm}^{2}$ (20 AWG) PVC jacket		
Separation	Max. 365 m (1 200 ft)		
Certificates and approvals	Standard: CE, CSA, FM, ATEX, IECEX	Standard: CE, CSA, FM, ATEX, IECEX XPS-15F: FM Class I, Div. 1, Groups A, B, C, and D, Class II Div. 1, Groups E, F, and G, Class III	CE, CSA, FM, ATEX, IECEx

[^16]
Level measurement

Continuous level measurement
Ultrasonic transducers
EchoMax XPS

Dimensional drawings

XPS ultrasonic transducer

Version			
Dimension	XPS-10	XPS-15	XPS-30
A	$\begin{aligned} & 88 \mathrm{~mm} \\ & (3.464 \mathrm{inch}) \end{aligned}$	121 mm (4.764 inch)	$\begin{aligned} & 175 \mathrm{~mm} \\ & \text { (6.890 inch) } \end{aligned}$
B	$\begin{aligned} & 122 \mathrm{~mm} \\ & \text { (4.803 inch) } \end{aligned}$	$\begin{aligned} & 132 \mathrm{~mm} \\ & \text { (5.197 inch) } \end{aligned}$	$\begin{aligned} & 198 \mathrm{~mm} \\ & \text { (7.795 inch) } \end{aligned}$
C	According to ASME, DIN, and JIS		
E	$\begin{aligned} & 124 \mathrm{~mm} \\ & \text { (4.882 inch) } \end{aligned}$	$\begin{aligned} & 158 \mathrm{~mm} \\ & \text { (6.220 inch) } \end{aligned}$	n/a
F	$\begin{aligned} & 152 \mathrm{~mm} \\ & \text { (5.984 inch) } \end{aligned}$	$\begin{aligned} & 198 \mathrm{~mm} \\ & \text { (} 7.795 \mathrm{inch} \text {) } \end{aligned}$	n/a
J	28 mm (1.1 inch)	28 mm (1.1 inch)	28 mm (1.1 inch)

Circuit diagrams

Direct connection

3 terminal direct*

* For SITRANS LUT400, MultiRanger 100/200, HydroRanger 200

Mounting

Make particularly sure that the radiating face of the transducer is protected from damage. Mount the transducer so that it is above the maximum material level by at least the blanking value. On liquid applications, the transducer must be mounted so that the axis of transmission is perpendicular to the liquid surface. On solids applications, an Easy Aimer should be used to facilitate aiming the transducer. Consider the optional temperature sensor when mounting the transducer.

Interconnection

Do not route cable openly or near high voltage or current runs, contactors and SCR control drives. For optimum isolation against electrical noise, run cable separately in a grounded metal conduit. Seal all thread connections to prevent ingress of moisture.

XPS ultrasonic transducer connections

GENERAL DESCRIPTION

The Roto-Float SSTNM is a non-mercury, direct acting float switch. Each float contains a single pole, single throw reed switch which changes state at +30 from horizontal and -30 from horizontal. The float housing is $5 "$ in diameter, made of 316 stainless steel and Teflon coated for preventing grease and debris from collecting on the float. Extra-hard usage electrical cable is used to electrically connect the switch back to the control panel. The cable and switch are epoxy encapsulated in the float housing potting tube, forming a watertight, impact resistant unit. The Roto-Float SSTNM Type \mathbf{P} is equipped with a stainless steel bracket for attachment to a 1" pipe, (by others). The Type W mounting style is equipped with a stainless steel bracket and clip assembly that secures the float to a WRW wire rope kit. The Type \mathbf{S} suspended has an external lead weight attached to the cable and is suspended fro above on the floats own cable.

Applications

The Roto-Float SSTNM was designed primarily for controlling pumps in wastewater applications for turning pumps on and off in emptying or filling situations; signal alarm levels, and other application where liquid levels need to be automatically monitored. Its use may be suitable in other liquids, as well.

Specification Information
Electrical Rating: 1A@120Vac; reed switch
Temp. Limit: 110F
Circuit Configuration: NO, *normally open
NC, *normally closed
This switch is compatible with intrinsically safe circuits. The switch neither stores nor generates an electrical charge.

Mounting Styles:
Type P- Pipe mounted for 1 " pipe Type W- Wire rope mounted, (use w. WRW Kit) Type S- Suspended, external weight on cable

Nominal Duplex Circuit (Reference Only!)

Normally Open Type P SSTNM
Switch Status vs. Liquid Level

Submitted \qquad
Approved \qquad

Important Information:

The green wire should always be properly grounded, per NEC. Use this product in accordance with the NEC, local codes, and the authority having jurisdiction. Roto-Float SSTNM is suitable for use with intrinsically safe circuits.

Do not use Roto-Float SSTNM in gasoline or other volatiles and combustibles. Check with the factory for exotic applications.

anchor scientific, inc. Box 378 Long Lake, MN 55356 Ph: 952-473-7115			
$\begin{aligned} & \text { Drwn } \\ & \text { j.p. } \end{aligned}$	$\begin{aligned} & \text { Date } \\ & 3 / 11 / 11 \end{aligned}$	Roto-Float SSTNM	
		Rev.	
		DWG.	SSTNM-BS1

Local Control Station

"When a smaller enclosure is needed for industrial controls, our CXI Series cannot be beat."

Features:

All enclosures are available in NEMA 4X with neoprene gasket for water tight applications.
All enclosures are suitable for surface or panel mounting.
Cast from light - weight corrosion resistant aluminum
Attractive wheelabrate finish
Durable cast mounting feet and easily accessible grounding screw.
Expanded internal space for splicing or terminal blocks.
Available to use with Mini Pilot Device Series (1" center to center)

Ordering Instructions:

All "CXI" enclosures are machined with operator (3/4" NPSM in cover) and standard conduit holes as specified in chart. (Consult factory for custom specifications).

To order NEMA-4 gasket, add suffix "N4" to part number (CXI 333-X1-N4). For Panel Mount Applications (3/4" NPSM in base instead of cover), use prefix "CXP" instead of "CXI" (CXP 333-X1).
To order Junction Box type enclosures, order
"AXI" Series Enclosures.
Spacing constraints may apply when using some operator types (Mushroom Head P.B., Illum. P.B., Push to Test P.L., etc.); C/F

Consult factory for terminal installation or custom layouts.
See "order form page" on additional information to customize this enclosure.

Materials:

Enclosures: Copper-free Aluminum (less than 0.25% copper content)
Cover Bolts: Cad-Plated or Stainless Steel (please specify)
Mounting Pan (Opt.): Aluminum*;
Galvanized Steel or Phenolic Materials available upon request.
*Note: Aluminum Mounting Pan will be provided if mounting pan is requested, unless otherwise noted.

Compliances:

N.E.C. - Class. I, Div. 1 \& 2 Groups B*, C \& D

Class. II, Div. 1 \& 2 Groups E, F \& G
Class. III
NEMA 7 \& 9 (Optional 3, 4X)

* - CXI 484 Only

> Try our spacious CXI 484 when
> Group B is required

Approvals:

UL CLASSIFIED - Standard 886 - E94590
cUL (CXI 4 \& 6) - Standard C22.2 No. 30-M1986 and No. 25-1966 CSA Certified (CXI 3) - Standard C22.2 No. LR64264

Explosion-Proof Control Stations "CXI" Series

CXI Dimensions

Catalog Number	Nominal Inside Dimensions W			Dimensions In Inches					Std. Est. Conduit Lbs. Size		Mtg. Bolt Size
				A	B	C	F	E			
CXI 333-X1	3-1/2	3-1/2	3	4-9/16	4-9/16	4-1/2	5-1/2	3-1/4	5	3/4"	1/4"
CXI 363-X2	3-1/2	6	3	7-1/16	4-9/16	4-1/2	8	3-1/4	6	3/4"	1/4"
CXI 373-X3	3-1/2	7	3	8-1/16	4-9/16	4-1/2	9	3-1/4	7	3/4"	1/4"
CXI 393-X4	3-1/2	9	3	10-1/16	4-9/16	4-1/2	11	3-1/4	8	1 "	1/4"
CXI 3113-X5	3-1/2	11	3	12-1/16	4-9/16	4-1/2	13	3-1/4	10	1-1/4"	1/4"
CXI 3133-X6	3-1/2	13	3	14-1/16	4-9/16	4-1/2	15	3-1/4	11	1-1/4"	1/4"
CXI 3153-X7	3-1/2	15	3	16-1/16	4-9/16	4-1/2	17	3-1/4	12	1-1/4"	1/4"
CXI 3183-X8/X9	3-1/2	18	3	19-1/16	4-9/16	4-1/2	20	3-1/4	14	1-1/4"	1/4"

CXI Dimensions

Catalog Number	Nominal Inside Dimensions W L D			Dimensions In Inches					Est. Lbs.	Max. Conduit Size	Mtg. Bolt Size
CXI 484	4-1/4	8	4	10-29/64	6-45/64	5-5/8	11-1/2	5-1/4	19	2"	1/4"
CXI 6104	6-1/2	10	4	11-1/16	7-9/16	6-1/8	11-27/32	6-1/4	21	2"	1/4"
CXI 6174	6-1/2	17	4	18-5/16	7-13/16	6-1/8	18-3/4	6-1/4	33	2"	1/4"
CXI 6244	6-1/2	24	4	25-13/16	7-13/16	6-1/8	26-1/4	6-1/4	45	2"	1/4"
CXI 6304	6-1/2	30	4	31-13/16	7-13/16	6-1/8	32-1/4	6-1/4	56	2"	1/4"

Note: All dimensions are for reference only

[^17]
Explosion-Proof Control Station Ordering Information

TABLE III - OPTIONAL MODIFICATIONS

$B D=$ Breather or Drain with $1 / 2^{\prime \prime}$ NPT (please specify)
2BD=Breather \& Drain
C1= Circuit Breaker Handle, 100 AMP - installed
C2= Circuit Breaker Handle, 225 AMP - installed
C4= Circuit Breaker Handle, 600 AMP - installed
C5 = Circuit Breaker Handle, 800 AMP - installed
C8= Circuit Breaker Handle, Custom - installed
C10= Panel Board Breaker Handle
CEN= Cenelec (ATEX) Option
E1= Corrosion-Resistant Epoxy Paint (Outside only)
E2= Corrosion-Resistant Epoxy Paint (Inside \& Outside)
E3= Stainless Steel (316) Triple Lead Captive Quick Thread Cover Bolts
E4= Stainless Steel Mounting Hardware (Internal Hardware)
E5= Corrosion-Resistant Epoxy Paint (Inside Only)
E8= Custom Mounting Bracket (For meter, etc.)
E9= Clear Anodizing
G1= 1" Diameter Round Window Glass (Installed)
G2 $=2$ " Diameter Round Window Glass (Installed)
G3 $=3^{\prime \prime}$ Diameter Round Window Glass (Installed)
G4 = 4" Diameter Round Window Glass (Installed)
G5 $=5-1 / 4$ " Diameter Round Window Glass (Installed)
G6 $=6-3 / 4$ " Diameter Round Window Glass (Installed)
G7 $=7-5 / 8^{\prime \prime}$ Diameter Round Window Glass (Installed)
G8= Custom Square or Rectangular Window Glass (Installed / Specify)
H1 = Stainless Steel Hinge Kit (for AXJ12126 and smaller)
HC1= Aluminum Cast Hinge Kit (for AXJ12126 and smaller)
H2= Medium Duty Cast Aluminum Hinge Kit (for CXJ12184 to CXJ18308)
H3= Heavy Duty Cast Aluminum Hinge Kit (for CXJ18368 to CXJ346810)

> HL** Hinge Lifter Guide Pin
> K+= Terminal Block (Specify Qty.)
> MS= Standard XJIH Mounting Strap
> MSR= Raised XJIH Mounting Strap
> MSD = Diamond Shaped XJIH Mounting Strap
> N1=Aluminum Mounting Panel
> N2= Galvanized Mounting Panel
> $N 3=$ Phenolic Mounting Panel
> N4 $=$ NEMA 4 O-ring Gasket
> N5 = Stainless Steel Rust Proof Cover Bolts
> N6= Metallic Legend Plates Jumbo Metallic Legend Plates
> MN6= Mini Metallic Legend Plates
> N7= Phenolic Legend Plates
> N8= Custom Legend Plates
> R3 = 3/4" NPSM Close-Up Plug
> RP1 $=1 / 2^{\prime \prime}$ NPT Conduit Entry Close-Up Plug
> RP2 $=3 / 4^{\prime \prime}$ NPT Conduit Entry Close-Up Plug
> RP3= 1" NPT Conduit Entry Close-Up Plug
> RP4 $=1-1 / 4^{\prime \prime}$ NPT Conduit Entry Close-Up Plug
> RP5 $=1-1 / 2^{\prime \prime}$ NPT Conduit Entry Close-Up Plug
> RP6= 2" NPT Conduit Entry Close-Up Plug
> RP7= 2-1/2" NPT Conduit Entry Close-Up Plug
> RP8 $=3$ " NPT Conduit Entry Close-Up Plug
> RP9 $=3-1 / 2^{\prime \prime}$ NPT Conduit Entry Close-Up Plug
> RP10 $=4$ " NPT Conduit Entry Close-Up Plug
> * - HL is suggested for enclosures with 30 " of length, or when hinges are installed on the short side of the enclosure.

TABLE IV - CONDUIT SPACING

Outlet MINIMUM CENTER TO CENTER CONDUIT SEPARATIONS INCHES (mm)																
Code		4 (M90)	3-1/2 (M85)	3 (M80)	2-1/2 (M75)	2 (M63)	1-1/2 (M50)	1-1/4 (M40)	1 (M32)		3/4 (M25)	1/2 (M20)				
1	1/2	3-5/8 (92.08)	3-3/8 (85.73)	3 (76.2)	2-5/8 (66.68)	2-3/8 (60.33)	2 (50.8)	2 (50.8)	1-3/4 (44.45)		1-5/8 (41.28)	1-1/2 (38.1)				
2	3/4	3-3/4 (95.25)	3-1/2 (88.9)	3-1/8 (79.38)	2-3/4 (69.85)	2-1/2 (63.5)	2-1/8 (53.98)	2-1/8 (53.98)	1-7/8 (47.63)		1-3/4 (44.45)					
3	1	4 (101.6)	3-5/8 (92.08)	3-1/4 (82.55)	3 (76.2)	2-5/8 (66.68)	2-3/8 (60.33)	2-3/8 (60.33)	2 (50.8)							
4	1-1/4	4-1/4 (107.95)	4 (101.6)	3-5/8 (92.08)	3-1/4 (82.55)	3 (76.2)	2-5/8 (66.68)	2-5/8 (66.68)	* If seals are used, extra clearance may be required. Check dimensions of seals and fittings to determine required spacing. Consult factory for assistance.							
5	1-1/2	4-1/4 (107.95)	4 (101.6)	3-5/8 (92.08)	3-1/4 (82.55)	3 (76.2)	2-5/8 (66.68)									
6	2	4-5/8 (117.48)	4-1/4 (107.95)	3-7/8 (98.43)	3-5/8 (92.08)	3-1/4 (82.55)										
7	2-1/2	4-7/8 (123.83)	4-5/8 (117.48)	4-1/4 (107.95)	3-7/8 (98.43)	Size	Pitch	Trade Size of Conduit (NPT)		Threads Per Inches		Minimum Wall Thickness (Inches)				
8	3	5-3/8 (136.53)	5 (127)	4-5/8 (117.48)												
9	3-1/2	5-5/8 (142.88)	5-1/4 (133.35)			M50	1.5, 2	1/2-3/4				. 357				
10	4	5-7/8 (149.23)				M80	2	1-2				. 435				
		578(149.23)				M90	2	2-1/2				. 625				

Pilot Lights

- Pigtail
- Saddle Clamp
- Transformer
- Illuminated P.B.
- Push-To-Test
- Mini

Push Buttons

- Flush
- Extended
- Dual
- Mushroom Head
- Mini
- Maintained

Potentiometers

- 1k, 2k, bk \& 10k Ohms

Reset Push Buttons

- Standard

Consult factory to confirm certifications for complete product line

Specifications / XM \& XP Series North American

- $-25^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ Ambient
- NAMA 4X
- 3/4-14 npsm thread - standard series (XP-type)
- 3/8-16 un thread - mini series (XM type)

XM (Mini) \& XP (-CEN) Cenelec Series

- Ex II 2 G Ex d IIB + H2
- \&x \|l 2 D
- $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ Ambient
- IP66 when installed in an IP66 rated enclosure
- DEMKO 06 ATEX 0605697 U
- Directive 94/9/EC
- "U" Component Certification
- EN 60079-0: 2004+ prAA:2005
- EN 60079-1: 2004
- EN 50281-1-1: 1998 incl. A1: 2002
- Please add "-CEN" to designate ATEX (Optional)

Explosion-Proof Pilot Devices

Nema Type 4, 4X, 7 \& 9
2 \& 3 Position Selector Switches

Specifications

a = Switch Type	
Code	Description
Blank	Standard
K	Keyed

b = Number of Positions

C/F for Selector Switches with greater than 3 positions
C = Sequence

Code	Description
S	Maintained
C	Return to Center
R	Return From Left
L	Return From Right

e=Key Removal Position	
Code	Description
Blank	No Key
C	Center Removal
R	Right Removal
L	Left Removal

$\boldsymbol{g}=$ Unique Key Configurations	
Code	Description
AE1	Key \#1
AE2	Key \#2
AE3	Key \#3

Code	Description
Blank	No Contacts
A	1 N.O.
B	1 N.C.
2A	2 N.O.
	2 N.C.
C	1 N.O. / 1 N.C.
* D	2 N.O. $/ 2$ N.C.
	1 N.C.L.B.
F	1 N.O.E.M.
2E	2 N.C.L.B.
2 F	2 N.O.E.M.
*G	1 N.O. / 1 N.C.L.B.
*H	1 N.C. / 1 N.C.L.B.
*J	3 N.O. / 3 N.C.
*K	4 N.O. 4 N.C.
L	N.O.E.M.-N.C.
M	N.O.E.M.-N.O.
N	N.C.L.B.-N.O.E.M.
P	2 N.O. / 2 N.C. (300V)

$\boldsymbol{h}=$ Accessory	
Code	Description
-FS	Finger Safe Options

N4 $=$ NEMA 4 locking collar is standard on all Akron Electric operators

3/4"-14 NPSM standard thread CONTACT ABBREVIATION N.O.= Normally Open N.C. = Normally Closed N.C.L.B. $=$ Normally Closed- Late Break N.O.E.M. $=$ Normally Open- Early Make

All contact blocks are rated 600 V unless noted.

Consult factory for switching sequences with multiple contacts. Up to four contacts may be stacked.

See Cam Page for Reference to Switching Sequences.

Pushbuttons can also be used with Allen Bradley or C3 Controls contact blocks. (C/F)
*Denotes multiple block configuration

Part \# XP3-LSC and XP3-SSD

Explosion-Proof Pilot Devices
Nema Type 4, 4X, 7 \& 9

XP 2 \& 3 Selector Switch Operators (Keyed \& Non-Keyed) Dimensional Data

Dimensions (Inches [mm])

Note: All dimensions are for reference only CLASS I, Div 1 \& 2, GROUPS B, C \& D; CLASS II, Div 1 \& 2, GROUPS E, F \& G;
CLASS III,
NEMA TYPE 4, 4X, 7 \& 9
UL 698 Industrial Control Equipment in Hazardous (Classified) Locations.

UL 1203 Explosion-Proof and Dust-Ignition-Proof Electrical Equipment for Use in Hazardous (Classified) Locations.

CSA C22.2 No. 30-LR86146 Explosion-Proof Enclosures for use in Class I Hazardous locations.
(IL) (©LI) us
FILE NO. E203605
FILE NO. E181300

LR86146

(Optional)

FEATURES

- Operator bodies are black anodized \& teflon impregnated.
- Operating Shafts are stainless steel.
- 3/4-14 NPSM threaded body size
- Long Series: Accommodates up to 2-1/2" thick enclosure wall thickness.
- Short Series: Accommodates up to $1 "$ thick enclosure wall thickness.
- Explosion-Proof Operators are suitable for panel or surface mount applications.
- See Contact Block Information sheet for mounting and rating information.
- Selector Switches available in 2 or 3 positions (For Keyed - specify key removal position)
- Three unique key configurations available - Specify AE1, AE2, or AE3

Keyed Selector Switch ex. XPK2-SSL

Short Barrel

Long Barrel

ex. XP2-SS

Explosion-Proof Selector Switches

Nema Type 4, 4X, 7 \& 9

Selector Switch Contact Sequence Chart

Contact Block Switching Sequences (Standard Installation)

	$\begin{gathered} \text { CONTACT } \\ \text { LOCK (AE) } \end{gathered}$	$\begin{array}{r} \text { CONTACT } \\ \text { BLOCK (CH) } \end{array}$	CIRCUIT OF CONTACT BLOCK	$\begin{array}{\|c\|} \hline \text { MTG. } \\ \text { Pos. } \\ \hline \end{array}$	$\begin{gathered} 2 \text { POSITION } \\ \hline \text { CAM } 1 \\ \hline \end{gathered}$	3 POSITION				
						CAM 2	CAM 3	CAM 4	CAM 5	CAM 6
	KNOB POSITION			-	L R	L C R	L C R	L C R	L C R	L C R
"A"	2003ABB	$10250 T 53$	1 N.O.	A	OX	O 0 X	XOO	0×0	X $\times 0$	$\mathrm{O} \times \mathrm{O}$
"B"	2003AAB	10250T51	1 N.C.	A	X O	X X O	O X X	X O X	O O X	O O X
"2A"	2003AEB	10250T2	$\begin{aligned} & 1 \text { N.O. } \\ & 1 \text { N.O. } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 0 \times \\ & 0 \times \end{aligned}$	$\begin{aligned} & 0 \mathrm{O} \\ & \mathrm{X} \\ & \mathrm{O} \end{aligned}$	$\begin{array}{lll} x & 0 & 0 \\ 0 & 0 & x \end{array}$	$\begin{aligned} & 0 \times 0 \\ & 0 \times X \end{aligned}$	$\begin{array}{lll} x & x & 0 \\ x & 0 & 0 \end{array}$	$\begin{array}{lll} 0 \times 0 \\ 0 & 0 & X \end{array}$
"2B"	2003ADB	10250T3	$\begin{aligned} & 1 \text { N.C. } \\ & 1 \text { N.C. } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{array}{r} \times 0 \\ \times 0 \end{array}$	$\begin{aligned} & \text { X X O } \\ & 0 \times 0 \end{aligned}$	$\begin{aligned} & 0 \times x \\ & \times \times 0 \end{aligned}$	$\begin{array}{lll} x & 0 & x \\ x & 0 & 0 \end{array}$	$\begin{aligned} & 0 \mathrm{O} X \\ & 0 \mathrm{X} \end{aligned}$	$\begin{aligned} & 00 \\ & \mathrm{x} \\ & \mathrm{O} \\ & \hline \end{aligned}$
"C"	2003ACB	10250T1	$\begin{aligned} & 1 \text { N.C. } \\ & 1 \text { N.O. } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{array}{ll} \hline x & 0 \\ 0 & x \end{array}$	$\begin{aligned} & x \times 0 \\ & x 00 \end{aligned}$	$\begin{aligned} & 0 \times x \\ & 0 \times O \end{aligned}$	$\begin{aligned} & \text { X O X } \\ & \text { O X X } \end{aligned}$	$\begin{aligned} & 001 \\ & x \\ & x \end{aligned}$	$\begin{array}{lll} 0 & 0 & X \\ 0 & O & X \end{array}$
"D"	$\begin{gathered} (2) \\ 2003 \mathrm{ACB} \end{gathered}$	$\begin{gathered} \stackrel{(2)}{(2)} \\ \text { 10250T1 } \end{gathered}$	$\begin{aligned} & 2 \text { N.C. } \\ & 2 \text { N.O. } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline X O \\ & 0 \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{x} \times \mathrm{O} \\ & \mathrm{X} O \mathrm{X} \end{aligned}$	$\begin{aligned} & 0 \times x \\ & 0 \times O X \end{aligned}$	$\begin{array}{lll} \hline X O X \\ O & X & X \end{array}$	$\begin{array}{lll} \hline 001 \\ x & 0 & 0 \end{array}$	$\begin{array}{lll} \hline 0 & 0 & X \\ 0 & O \end{array}$
"E"	2003AGB	10250T71	1 N.C.L.B	A	X O	X X O	O X X	X O X	O O X	O O X
"2E"	2003AHB	10250T45	$\begin{aligned} & 1 \text { N.C.L.B. } \\ & 1 \text { N.C.L.B. } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \hline \times 0 \\ & \times 0 \end{aligned}$	$\begin{aligned} & x \times 0 \\ & 0 \times 0 \end{aligned}$	$\begin{aligned} & 0 \times 1 \\ & \mathrm{X} \times \mathrm{O} \end{aligned}$	$\begin{array}{lll} x & 0 & x \\ x & 0 & 0 \end{array}$	$\begin{array}{ll} \hline 0 \mathrm{O} \\ \mathrm{O} & \mathrm{X} \end{array}$	$\begin{array}{lll} 00 & 0 \\ x & 0 & 0 \end{array}$
"J"	$\begin{gathered} (3) \\ 2003 A C B \end{gathered}$	$\begin{gathered} \hline(3) \\ 10250 \mathrm{~T} 1 \end{gathered}$	$\begin{aligned} & 3 \text { N.C. } \\ & 3 \text { N.O. } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \mathrm{X} O \\ & 0 \mathrm{X} \end{aligned}$	$\begin{aligned} & x \times 0 \\ & \times 0 \quad X \end{aligned}$	$\begin{aligned} & 0 \times x \\ & 0 \mathrm{O} X \end{aligned}$	$\begin{array}{lll} \hline X O X \\ O X X \end{array}$	$\begin{array}{ll} \hline 00 & x \\ x & 0 \end{array}$	$\begin{array}{lll} \mathrm{O} & 0 & X \\ 0 & 0 & X \end{array}$
"K"	$\begin{gathered} (4) \\ 2003 A C B \end{gathered}$	$\begin{gathered} (4) \\ \text { 10250T1 } \end{gathered}$	$\begin{aligned} & 4 \text { N.C. } \\ & 4 \text { N.O. } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{array}{ll} \hline x & 0 \\ 0 & x \end{array}$	$\begin{array}{lll} x & \times 0 \\ x & 0 \end{array}$	$\begin{aligned} & 0 \times x \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { X O X } \\ & \text { O X X } \end{aligned}$	$\begin{array}{lll} 0 & 0 & x \\ x & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & X \\ 0 & O & X \end{array}$
"L"	2003AJB	10250T47	$\begin{aligned} & 1 \text { E.C.N.O. } \\ & 1 \text { N.C. } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \hline 0 \times \\ & \mathrm{x} 0 \end{aligned}$	$\begin{array}{ll} 0 \mathrm{O} X \\ \mathrm{O} & \mathrm{X} \end{array}$	$\begin{array}{lll} x & 0 & 0 \\ x & 0 \end{array}$	$\begin{aligned} & 0 \times 0 \\ & \times 00 \end{aligned}$	$\begin{aligned} & x \times 0 \\ & 0 \times x \end{aligned}$	$\begin{array}{lll} x & \times 0 \\ x & 0 & 0 \end{array}$
"M"	2003AKB	10250 T57	$\begin{aligned} & 1 \text { E.C.N.O. } \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 0 \times x \\ & 0 \times x \end{aligned}$	$\begin{array}{ll} \hline 00 \times \\ \text { X O X } \end{array}$	$\begin{array}{lll} \mathrm{x} & 0 & 0 \\ 0 & O & x \end{array}$	$\begin{aligned} & 0 \times 0 \\ & 0 \times x \end{aligned}$	$\begin{array}{lll} x & x & 0 \\ x & 0 & 0 \end{array}$	$\begin{array}{lll} 0 \times O \\ 0 & 0 & x \end{array}$
"N"	2003ALB	10250 T55	$\begin{aligned} & 1 \text { L.O.N.C. } \\ & 1 \text { E.C.N.O. } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{array}{ll} \mathrm{x} & 0 \\ 0 & x \end{array}$	$\begin{aligned} & \mathrm{X} \times \mathrm{O} \\ & \mathrm{X} O \mathrm{X} \end{aligned}$	$\begin{aligned} & 0 \times x \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{lll} \hline x O X \\ 0 X X \end{array}$	$\begin{aligned} & 001 \\ & x \\ & x \end{aligned}$	$\begin{array}{lll} \text { X O X } \\ \text { O X X } \end{array}$
"P"	$\begin{gathered} \hline \text { 2003AFB } \\ \text {-RATED- } \\ \text {-300V } \end{gathered}$	$\begin{gathered} \hline \text { 10250T44 } \\ \text {-RATED- } \\ \text {-300V } \end{gathered}$	$\begin{aligned} & 1 \text { N.C. } \\ & 1 \text { N.O. } \\ & 1 \text { N.C. } \\ & 1 \text { N.O. } \end{aligned}$	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$	$\begin{array}{ll} \hline x & 0 \\ 0 & x \\ x & 0 \\ 0 & x \end{array}$	$\begin{array}{lll} \hline X & X & O \\ O & O & X \\ O & X & O \\ X & O & X \end{array}$	$\begin{array}{lll} O O & X & X \\ X & O & O \\ X & X & O \\ O & O & X \end{array}$	$\begin{array}{lll} x & O & X \\ O & X & O \\ X & O & O \\ O & X & X \end{array}$	$\begin{aligned} & \text { O O X } \\ & \text { X X O } \\ & 0 \mathrm{X} \\ & \text { X O O } \end{aligned}$	$\begin{array}{lll} O & O & X \\ O & X & O \\ X & O & O \\ O & O & X \end{array}$

Inverted Contact Blocks (Rotated 180° from Standard)

A AE,	$\begin{gathered} \text { CONTACT } \\ \text { BLOCK (AE) } \end{gathered}$	$\begin{gathered} \text { CONTACT } \\ \text { BLOCK (CH) } \end{gathered}$	CIRCUIT OF CONTACT BLOCK	${ }_{\text {coses. }}^{\text {MTG. }}$	$\begin{gathered} \hline 2 \text { POSITION } \\ \hline \text { CAM } 1 \\ \hline \end{gathered}$	3 POSITION				
						CAM 2	CAM 3	CAM 4	CAM 5	CAM 6
	KNOB POSITION			\rightarrow	L R	L C R	L C R	L C R	L C R	L C R
"A*"	2003ABB	$10250 T 53$	1 N.O.	B	O X	XOX	O 0 X	$\mathrm{O} \times \mathrm{X}$	XOO	O 0 X
"B*"	2003AAB	10250T51	1 N.C.	B	X 0	0×0	$\times \times 0$	XOO	$\mathrm{O} \times \mathrm{X}$	XOO
"E*	2003AGB	10250T71	1 N.C.L.B	B	$\times 0$	0×0	X X O	X O O	O X X	X X O
"C*"	2003ACB	10250T1	$\begin{aligned} & 1 \text { N.O. } \\ & 1 \text { N.C. } \end{aligned}$	$\begin{aligned} & \hline \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \hline 0 \times \\ & \mathrm{X} 0 \end{aligned}$	$\begin{array}{lll} \hline \mathrm{O} & \mathrm{O} \\ \mathrm{O} & \mathrm{X} & \mathrm{O} \end{array}$	$\begin{array}{lll} \hline \times O & 0 \\ \times X O \end{array}$	$\begin{aligned} & 0 \times 0 \\ & \times 00 \end{aligned}$	$\begin{aligned} & \hline X \times O \\ & O X X \end{aligned}$	$\begin{aligned} & 0 \times 0 \\ & \times 00 \end{aligned}$
"D*"	$\begin{array}{c\|} \hline(2) \\ 2003 A C B \end{array}$	$\begin{gathered} \hline(2) \\ 10250 \mathrm{~T} 1 \end{gathered}$	$\begin{aligned} & 2 \text { N.O. } \\ & 2 \text { N.C. } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 0 \mathrm{X} \\ & \mathrm{x} 0 \end{aligned}$	$\begin{array}{lll} 0 & O & X \\ 0 & X & O \end{array}$	$\begin{array}{lll} x & 0 & 0 \\ x & \times & 0 \end{array}$	$\begin{aligned} & 0 \times 0 \\ & \times 00 \end{aligned}$	$\begin{array}{lll} \mathrm{X} \times \mathrm{O} \\ 0 \times X \end{array}$	$\begin{aligned} & 0 \times 0 \\ & \times 00 \end{aligned}$
"J*"	$\begin{gathered} \hline(3) \\ 2003 A C B \end{gathered}$	$\begin{gathered} (3) \\ \text { 10250T1 } \end{gathered}$	$\begin{aligned} & 3 \text { N.O. } \\ & 3 \text { N.C. } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 0 \times \\ & \times 0 \end{aligned}$	$\begin{array}{lll} 0 & 0 & X \\ 0 & X & 0 \end{array}$	$\begin{array}{lll} \mathrm{x} & 0 & 0 \\ \mathrm{X} & \mathrm{X} & 0 \end{array}$	$\begin{aligned} & 0 \times 0 \\ & \times 00 \end{aligned}$	$\begin{array}{lll} \hline \times x & 0 \\ 0 \times x \end{array}$	$\begin{aligned} & 0 \times 0 \\ & \times 00 \end{aligned}$
"K*"	$\begin{gathered} (4) \\ 2003 А С B \end{gathered}$	$\begin{gathered} (4) \\ \text { 10250T1 } \end{gathered}$	$\begin{aligned} & 4 \text { N.O. } \\ & 4 \text { N.C. } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \hline 0 \times \\ & \times 0 \end{aligned}$	$\begin{array}{lll} 0 & 0 & x \\ 0 & x & 0 \end{array}$	$\begin{array}{lll} x & 0 \\ \times 0 & 0 \end{array}$	$\begin{aligned} & 0 \times 0 \\ & \times 00 \end{aligned}$	$\begin{aligned} & \mathrm{x} \times \mathrm{O} \\ & 0 \times \mathrm{X} \end{aligned}$	$\begin{aligned} & 0 \times 0 \\ & \times 00 \end{aligned}$
"L*"	2003AJB	10250T47	1 L.O.N.C. 1 E.C.N.O.	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{array}{ll} \hline x & 0 \\ 0 & x \end{array}$	$\begin{array}{lll} x & \times & 0 \\ x & 0 & x \end{array}$	$\begin{array}{lll} \hline \times 0 & 0 \\ \times X O \end{array}$	$\begin{aligned} & 0 \times 0 \\ & \times 00 \end{aligned}$	$\begin{aligned} & \hline \times \times 0 \\ & 0 \times x \end{aligned}$	$\begin{aligned} & 0 \times 0 \\ & \times 00 \end{aligned}$
"M*"	2003AKB	10250 T57	$\begin{aligned} & 1 \text { N.O. } \\ & 1 \text { E.C.N.O. } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 0 \times x \\ & 0 \times x \end{aligned}$	$\begin{array}{lll} \hline 0 \mathrm{O} \\ \mathrm{X} & \mathrm{O} \\ \hline \end{array}$	$\begin{array}{lll} \hline x & 0 & 0 \\ 0 & 0 & x \end{array}$	$\begin{aligned} & 0 \times 0 \\ & 0 \times x \end{aligned}$	$\begin{array}{lll} x & \times 0 \\ x & 0 & 0 \end{array}$	$\begin{aligned} & \hline 0 \times 0 \\ & 0 \times x \end{aligned}$
" ${ }^{*}$ "	2003ALB	10250T55	$\begin{aligned} & 1 \text { E.C.N.O. } \\ & 1 \text { L.O.N.C. } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 0 \mathrm{X} \\ & \mathrm{x} 0 \end{aligned}$	$\begin{array}{lll} 0 & 0 & X \\ 0 & x & 0 \end{array}$	$\begin{array}{lll} \mathrm{x} & 0 & 0 \\ \mathrm{X} & \mathrm{X} & 0 \end{array}$	$\begin{aligned} & 0 \times 0 \\ & \times 00 \end{aligned}$	$\begin{aligned} & \text { X X O } \\ & 0 \times X \end{aligned}$	$\begin{aligned} & x \times 0 \\ & \times \times 0 \end{aligned}$

Note: Please consult our Engineering Department for assistance with the interpretation of this chart

Nema Type 4, 4X, 7 \& 9

Pilot Lights

- Pigtail
- Saddle Clamp
- Transformer
- Illuminated P.B.
- Push-To-Test
- Mini

Push Buttons

- Flush
- Extended
- Dual
- Mushroom Head
- Mini
- Maintained

Potentiometers

- 1k, 2k, 5k \& 10k Ohms

Reset Push Buttons

- Standard
- Mini

Selector Switches

- 2-Position
- 2-Position Keyed
- 3-Position
- 3-Position Keyed
- Mini - Consult Factory

Explosion-Proof Pilot Devices

Nema Type 4, 4X, 7 \& 9

Part \#XPPPS-2RC

2 \& 3 Position Push-Pull Switch Operators

Specifications

XPPP ${ }_{a}^{a}-\frac{2}{b} \frac{\mathbf{R}^{2}}{d} \frac{\mathbf{A}}{e}-\frac{\text { FS }}{f}$ (-CEN)

Part \# XPPPS-2RC

Note: To engrave mushroom heads, C/F

e= Contact Blocks	
Code	Description
Blank	No Contacts
A	1 N.O.
B	1 N.C.
2A	2 N.O.
2B	2 N.C.
C	1 N.O. / 1 N.C.
*D	2 N.O. / 2 N.C.
E	1 N.C.L.B.
F	1 N.O.E.M.
$2 E$	2 N.C.L.B.
2F	2 N.O.E.M.
*G	1 N.O. / 1 N.C.L.B.
*H	1 N.C. / 1 N.C.L.B.
*J	3 N.O. / 3 N.C.
*K	4 N.O. / 4 N.C.
L	N.O.E.M.-N.C.
M	N.O.E.M.-N.O.
N	N.C.L.B.-N.O.E.M.
P	2 N.O. / N.C. (300V)

$\boldsymbol{f}=$ Accessories	
Code	Description
-FS	Finger Safe Option

CONTACT ABBREVIATION
N.O. = Normally Open
N.C. = Normally Closed
N.C.L.B. $=$ Normally Closed- Late Break N.O.E.M. $=$ Normally Open- Early Make E.C.N.O. $=$ Early Close-Normally Open L.O.N.C. $=$ Late Open-Normally Closed

All contact blocks are rated 600 V unless noted.

N4 $=$ NEMA 4 locking collar is standard
on all Akron Electric operators
3/4"-14 NPSM standard thread

Pushbuttons can also be used with Allen Bradley or C3 Controls contact blocks. (C/F)
*Denotes multiple block configuration
**Mushroom heads are made of Anodized Aluminum

2 Position Push-Pull Switch Operator XPPPS-2GE

LEFT SIDE VIEW

(16" DEEP)

Section 6

Spare Parts Listing

Storage Instructions for Motor, Gear Reducer, Bar Screen and Screwpactor

Service Center Locations

Headumarks

Spare Parts

Spare Parts

Jefferson WPCP - PO 498

Headworks shall provide the following spare parts with this order:
For the Bar Screen:

- One (1) each, Strainer
- One (1) lot, Set of fuses for each fuse rating
- One (1) lot, Lamp lenses

Headwarks

Storage Instructions

Storage Instructions

1. The bar screen ships on timbers. Unload the screen and use the same timbers to store the screens on the ground in the same manner as they come on the truck. The Screwpactor does not have any timbers. Unload the Screwpactor and use the legs to stand the equipment on the ground.
2. The bar screen and Screwpactor come covered in plastic. Cut ventilation holes on the side resting on the timbers so that air can circulate, but rain cannot collect and pool inside the equipment.
3. Baldor Motor - Baldor's long term storage requirements are attached.
4. SEW Gearbox - SEW Eurodrive's long term storage requirements are attached. When the gear reducer from SEW is ordered, all the storage requirements listed in the Technical Note are completed by the factory prior to shipment.

Note: We recommend shipping the gearbox and motor separate from the screen if the equipment stays outside more than two (2) months, but that they remain connected to each other. This way you can remove the fan cover from the motor and hand rotate the fan until you see the gearbox output hollow shaft rotate 2-3 times. This should be done every two (2) months and will fulfill both the gearbox and motor long term storage requirements.
5. Headworks removes the paper coating from the polycarbonate covers so that they do not bond to the material from prolonged exposure.
6. When placing the screen in service, check the take up bearings and take up rods to ensure they are still lubricated.
7. Control Panel - The control panel battery must keep its charge so that the programming is not erased. Keep the Control Panel indoors until the time of installation.

Receiving

Storage

Unpacking

Handling

Each Baldor Electric Motor is thoroughly tested at the factory and carefully packaged for shipment. When you receive your motor, there are several things you should do immediately.

1. Observe the condition of the shipping container and report any damage immediately to the commercial carrier that delivered your motor.
2. Verify that the part number of the motor you received is the same as the part number listed on your purchase order.
If the motor is not put into service immediately, the motor must be stored in a clean, dry and warm location. Several precautionary steps must be performed to avoid motor damage during storage.
3. Use a "Megger" periodically to ensure that the integrity of the winding insulation has been maintained. Record the Megger readings. Immediately investigate any significant drop in insulation resistance.
4. Do not lubricate bearings during storage. Motor bearings are packed with grease at the factory. Excessive grease can damage insulation quality.
5. Rotate motor shaft at least 10 turns every two months during storage (more frequently if possible). This will prevent bearing damage due to storage.
6. If the storage location is damp or humid, the motor windings must be protected from moisture. This can be done by applying power to the motors' space heater (if available) while the motor is in storage.
Each Baldor motor is packaged for ease of handling and to prevent entry of contaminants.
7. To avoid condensation inside the motor, do not unpack until the motor has reached room temperature. (Room temperature is the temperature of the room in which it will be installed). The packing provides insulation from temperature changes during transportation.
8. When the motor has reached room temperature, remove all protective wrapping material from the motor.
The motor should be lifted using the lifting lugs or eye bolts provided.
9. Use the lugs or eye bolts provided to lift the motor. Never attempt to lift the motor and additional equipment connected to the motor by this method. The lugs or eye bolts provided are designed to lift only the motor. Never lift the motor by the motor shaft or the hood of a WPII motor.
10. When lifting a WPII (weatherproof Type 2) motor, do not lift the motor by inserting lifting lugs into holes on top of the cooling hood. These lugs are to be used for hood removal only. A spreader bar should be used to lift the motor by the cast lifting lugs located on the motor frame.
11. If the motor must be mounted to a plate with the driven equipment such as pump, compressor etc., it may not be possible to lift the motor alone. For this case, the assembly should be lifted by a sling around the mounting base. The entire assembly can be lifted as an assembly for installation. Do not lift using the motor lugs or eye bolts provided.

If the load is unbalanced (as with couplings or additional attachments) additional slings or other means must be used to prevent tipping. In any event, the load must be secure before lifting.

Technical Note

Long-Term Storage

Mechanical

SEW supplies all gear reducers and gearmotors with oil. The quantity of oil depends upon the customer's mounting position. Since most mounting positions do not require the entire gear case to be filled with oil, moist air often exists within the cavity of the reducer. It is important that units not rest for an extended period of time without proper protection. Otherwise, problems can result. Rust could develop on the bearings, gears, and other steel components when the water molecules condense inside the reducer. In addition, flat spots could develop on the balls of the bearings or bearing raceway (brinelling) due to a concentrated load at a single point. Such loads exist on bearings that support the heavy rotors of large motors or on bearings that support the shaft of a bevel gear set, since the bevel sets are preloaded when installed.

To avoid potential problems during an extended rest period, SEW offers a "Long Term Storage" option that contains the following specifications.

Reducer

- Reducer is completely filled with the correct type of oil, regardless of mounting position.
- Oil level plug is installed at the correct location according to the mounting position.
- Reducer is painted per the required specifications.
- All unpainted exterior surfaces, such as input shaft, output shaft, and flange face are coated with a rust inhibitor.
- A breather plug is installed in the correct location for the mounting position specified on the nameplate.
- A "Long Term Storage" tag is attached to the eyebolt.

Motor

- Motor contains an insulation coating on the stator windings.
- Motor is painted per the required specifications.
- Any shaft extension protruding from the motor endbell is coated with a rust inhibitor.

Important! The output shaft of reducers and motors that contain long-term storage must be manually rotated every 2-3 months to keep the bearings from brinnelling. In addition, units must be stored in an area where they are not subject to vibration.

Technical Note

Varimot ${ }^{\circledR}$ or Varigear ${ }^{\circledR}$

- Varimot ${ }^{\circledR}$ contains a chrome-plated driving disc.
- Varigear ${ }^{\circledR}$ contains nitrided driving pulleys and nitrided driven pulleys.
- Unit is painted per the required specifications.
- All unpainted exterior surfaces, such as input shaft, output shaft, and flange face are coated with a rust inhibitor.
- A "Long Term Storage" tag is attached to its eyebolt if a reducer is not supplied.

Important! The output shaft of variable speed units that contain long-term storage must be manually rotated every $2-3$ months to keep the bearings from brinnelling. In addition, units must be stored in an area where they are not subject to vibration.

Placing Stored Units in Service:

When placing the unit in service, perform the following steps.

1. Remove the oil drain plug.
2. Drain the excess oil from the reducer.
3. Reinstall oil drain plug.
4. Check to see if the motor has absorbed moisture as a result of being in storage. Refer to the procedure described in the Operating Instructions sent with the drive. If you cannot locate your operating instructions, you may download a copy from the Technical Information section of the SEW website: www.seweurodrive.com.

If the actual mounting position is different than the mounting position stated on the nameplate, call your local SEW representative. Different mounting positions require different oil levels for proper operation. Also, you should request a new nameplate that contains the correct information.

No other steps are necessary before placing long-term storage units into service.

11-2003
NEW

Headwarks

Service Center Locations

Permanent Service Headquarters Locations

For Baldor Motors:

Electric Motors Co
7705 Hwy. 29 South
Hull, GA 30646
+1 7065496556

For SEW Eurodive Reducers:

SEW- Eurodrive, Inc.
1295 Old Spartanburg Hwy.
P.O Box 518

Lyman, SC 29365
+1 8644397537

For Headworks ${ }^{\circledR}$ Equipment:

Headworks Inc.
11000 Brittmoore Park Dr.
Houston, TX 77041
Phone: +1 7136476667

Section 7

Warranty Information

Headwnorks

Warranty for Jefferson WPCP Jefferson, GA

Warranty for Bar Screen

The seller warrants all equipment of its own manufacture to be free of defects caused by faulty material or workmanship for a period of eighteen (18) months from date of shipment or twelve (12) months from date of startup, whichever first occurs. Headworks will replace or repair any part or parts which upon examination shall show to have failed under normal use and service by the original user within the warranty period. In the event that defects develop during the warranty period, under normal and proper use, Headworks is to be notified promptly and with their consent the products are to be returned to Headworks F.O.B. Headworks factory at Buyer's expense. In the case of components purchased by Headworks and incorporated into the equipment, such as Electrical Controls, Instrumentation, Electrical Motors, Gear Reducers and related items, Headworks warranty is limited to the individual manufacturer's warranty for that component, usually one year. This warranty does not apply to equipment or parts thereof which have been altered or repaired other than by a representative of Headworks, or damaged by improper installation, application, erosion or corrosion of any sort, or subjected to misuse, abuse, neglect or accident.

THIS WARRANTY, INCLUDING THE STATED REMEDIES, IS EXPRESSLY MADE BY HEADWORKS AND ACCEPTED BY PURCHASER IN LIEU OF ALL OTHER WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHETHER WRITTEN, ORAL, EXPRESS, IMPLIED, OR STATUTORY. HEADWORKS NEITHER ASSUMES NOR AUTHORIZES ANY OTHER PERSON TO ASSUME FOR IT ANY OTHER LIABILITIES WITH RESPECT TO ITS EQUIPMENT. HEADWORKS SHALL NOT BE LIABLE FOR NORMAL WEAR AND TEAR, NOR FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGE DUE TO INOPERABILITY OF ITS EQUIPMENT FOR ANY REASON NOR ANY CLAIM THAT ITS EQUIPMENT WAS NEGLIGENTLY DESIGNED OR MANUFACTURED.

Headwarks

> Warranty for Jefferson WPCP Jefferson, GA

Warranty for Screwpactor

The seller warrants all equipment of its own manufacture to be free of defects caused by faulty material or workmanship for a period of eighteen (18) months from date of shipment or twelve (12) months from date of startup, whichever first occurs. Headworks will replace or repair any part or parts which upon examination shall show to have failed under normal use and service by the original user within the warranty period. In the event that defects develop during the warranty period, under normal and proper use, Headworks is to be notified promptly and with their consent the products are to be returned to Headworks F.O.B. Headworks factory at Buyer's expense. In the case of components purchased by Headworks and incorporated into the equipment, such as Electrical Controls, Instrumentation, Electrical Motors, Gear Reducers and related items, Headworks warranty is limited to the individual manufacturer's warranty for that component, usually one year. This warranty does not apply to equipment or parts thereof which have been altered or repaired other than by a representative of Headworks, or damaged by improper installation, application, erosion or corrosion of any sort, or subjected to misuse, abuse, neglect or accident.

THIS WARRANTY, INCLUDING THE STATED REMEDIES, IS EXPRESSLY MADE BY HEADWORKS AND ACCEPTED BY PURCHASER IN LIEU OF ALL OTHER WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHETHER WRITTEN, ORAL, EXPRESS, IMPLIED, OR STATUTORY. HEADWORKS NEITHER ASSUMES NOR AUTHORIZES ANY OTHER PERSON TO ASSUME FOR IT ANY OTHER LIABILITIES WITH RESPECT TO ITS EQUIPMENT. HEADWORKS SHALL NOT BE LIABLE FOR NORMAL WEAR AND TEAR, NOR FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGE DUE TO INOPERABILITY OF ITS EQUIPMENT FOR ANY REASON NOR ANY CLAIM THAT ITS EQUIPMENT WAS NEGLIGENTLY DESIGNED OR MANUFACTURED.

Headwarks

End of Submittal

[^0]:

[^1]: Disclaimer: The Headloss values we provide are based on Clean Water only and assume a smooth, flat and level Channel Invert upstream and downstream of the Bar Screen. Headloss values supplied by most Bar Screen manufacturers assume Clean Water, and smooth, flat and level Channel Inverts. Our calculation does not consider or allow for any slopes, recesses, turns, flumes, free falls into Wet Wells, etc. and we assume no liability for any increase in Headloss caused by conditions other than Clean Water and a smooth and flat Channel Invert.

[^2]: Disclaimer: The Headloss values we provide are based on Clean Water only and assume a smooth, flat and level Channel Invert upstream and downstream of the Bar Screen. Headloss values supplied by most Bar Screen manufacturers assume Clean Water, and smooth, flat and level Channel Inverts. Our calculation does not consider or allow for any slopes, recesses, turns, flumes, free falls into Wet Wells, etc. and we assume no liability for any increase in Headloss caused by conditions other than Clean Water and a smooth and flat Channel Invert.

[^3]: * \rightarrow page 45 on thermal losses

[^4]: (1) Valves require a 5 psi Minimum Pressure Differential to open. Once open, they remain open with 3 psi differential pressure.
 (2) Refer to Steam/Hot Water Valve Series for Hot Water constructions.
 (3) On 50 hertz service, the watt rating for the 6.1/F solenoid is 8.1 watts.

[^5]: * Front height of the drive with conduit box

[^6]: * Heat dissapation value is a reference for cabinet thermal design
 ** The maximum noise level is at full fan speed. When the drive is not operating at full load and at maximum ambient temperature the noise level is lower.
 ${ }^{* * *} A B B$ does not require Bussmann brand fuses. Fuses which meet the appropriate UL class type, current rating, and are rated at 600 V , 200 kA may be used.

[^7]: \# Coming soor

[^8]: * Covers sold individually. One cover needed for each pole.
 ${ }^{\dagger}$ Wire Type for Pressure Plate and Screw Terminal is CU only

[^9]: The only controlled copy of this Data Sheet is the electronic read-only version located on the Cooper Bussmann Network Drive. All other copies of this document are by definition uncontrolled. This bulletin is intended to clearly present comprehensive product data and provide technical information that will help the end user with design applications. Cooper Bussmann reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Cooper Bussmann also reserves the right to change or update, without notice, any technical information contained in this bulletin. Once a product has been selected, it should be tested by the user in all possible applications.

[^10]: (1) Possible using version V5.0 and above of "Zelio Soft 2" provided that the SR2COM01 communication module is not used. If this module is used, 16 timers,

[^11]: 1）See page 22.
 （2）See page 30.
 （3）Including 4 outputs at maximum current of 8 A and 2 outputs at maximum current of 5 A．
 （4）See page 32.
 Note：The Zelio Logic smart relay and its associated extensions have an identical voltage to be able to operate together．

[^12]: 1
 *For the value of the error against a preset time, whichever the largest, applies.

[^13]: [19] The vertical design differs from the horizontal design figure shown for the corresponding NEMA size, but the dimensions listed apply
 [20] 3-Pole only.
 [21] The standard enclosure has space for a fused control transformer, Form FF4T, on Sizes 0-2 (except 4-pole devices, Size 0 and 1).

[^14]: [9]

[^15]: * Interrupting Ratings (Interrupting ratings were measured at 70\%-80\% power factor on AC)
 ** DC Cold Resistance (Measured at $\leq 10 \%$ of rated current)
 \dagger Typical Melting $I^{2} t\left(\mathrm{~A}^{2} \mathrm{Sec}\right)$ ($\mathrm{I}^{2} \mathrm{t}$ was measured at listed interrupting rating and rated voltage.)
 \ddagger Typical Voltage Drop (Voltage drop was measured at $25^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$ ambient temperature at rated current)
 $\dagger \dagger$ MDL-25 \& MDL-30 not available in RoHS compliant construction.

[^16]: 1) Max range is rated for measurement of liquids, recommended range for solids is 50% of maximum. Application conditions such as extreme dust or angle of repose may reduce the usable maximum range. Consult a local sales person for more details.
[^17]: Note:
 Each CXI Enclosure includes the appropriate number of operator holes as specified in the table to the left

 By adding the suffixes (X1, X2, X3, etc.), one standard conduit size NPT hole will be placed at both the top and bottom of the enclosure along with the respective NPSM entries

 If these specifications are not desired, please use simply the CXI number with the desired modifications listed underneath as shown on the "AKRON Easy Catalog Ordering Information" on Page 22.

